-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_heights.py
executable file
·631 lines (513 loc) · 23.1 KB
/
plot_heights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
"""Recreate the IR depth gauge graph."""
import datetime, math, csv
import sys
import pytz
from plotly.graph_objs import Scatter, Layout
from plotly import offline
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.ticker as ticker
import utils.ir_reading as ir_reading
import utils.analysis_utils as a_utils
from slide_event import SlideEvent
aktz = pytz.timezone('US/Alaska')
def get_readings_weekly_format(data_file, year=None):
"""Get all readings from an IR gauge text file."""
# DEV: This assumes akdt.
# Should read from file.
print(f"\nReading data from {data_file}.")
with open(data_file, 'r') as f:
lines = f.readlines()
print(f" Read {len(lines)} lines.")
# Process data.
# Data begins on line 6.
readings = []
for line in lines[5:]:
data_pieces = line.split()
# Build datetime
date, time = data_pieces[0], data_pieces[1]
month, day = int(date[:2]), int(date[3:5])
hour, minute = int(time[:2]), int(time[3:5])
dt_ak = datetime.datetime(day=day, month=month, year=year, hour=hour,
minute=minute)
dt_utc = dt_ak + datetime.timedelta(hours=8)
dt_utc = dt_utc.replace(tzinfo=pytz.utc)
# Get height.
height = float(data_pieces[2][:5])
reading = ir_reading.IRReading(dt_utc, height)
readings.append(reading)
# Text file is in reverse chronological order; fix this.
readings.reverse()
print(f" Found {len(readings)} readings.")
return readings
def get_readings_weekly_format_utc(data_file, year=None):
"""Get all readings from an IR gauge text file."""
# DEV: This assumes utc.
# Should read from file.
print(f"\nReading data from {data_file}.")
with open(data_file, 'r') as f:
lines = f.readlines()
print(f" Read {len(lines)} lines.")
# Process data.
# Data begins on line 6.
readings = []
for line in lines[5:]:
data_pieces = line.split()
# Build datetime
date, time = data_pieces[0], data_pieces[1]
month, day = int(date[:2]), int(date[3:5])
hour, minute = int(time[:2]), int(time[3:5])
dt_utc = datetime.datetime(day=day, month=month, year=year, hour=hour,
minute=minute)
dt_utc = dt_utc.replace(tzinfo=pytz.utc)
# Get height.
height = float(data_pieces[2][:5])
reading = ir_reading.IRReading(dt_utc, height)
readings.append(reading)
# Text file is in reverse chronological order; fix this.
readings.reverse()
print(f" Found {len(readings)} readings.")
return readings
def get_readings_hx_format(data_file):
"""Get all readings from an IR gauge text file.
Uses the historical format, distinct from the weekly format:
Date,Type Source,Stage
0000-00-00 00:00:00,RZ,20.97
2014-07-14 23:00:00,RZ,21.21
These are stored in UTC.
"""
print(f"\nReading historical data from {data_file}.")
with open(data_file) as f:
# First line of data is on line 5.
reader = csv.reader(f)
for _ in range(4):
next(reader)
# readings = []
# for row in reader:
# datetime_str = row[0]
# # dt = datetime.datetime.fromisoformat(datetime_str)
# # dt = dt.replace(tzinfo=pytz.utc)
# dt = datetime.datetime.fromisoformat(datetime_str).replace(
# tzinfo=pytz.utc)
# height = float(row[2])
# reading = ir_reading.IRReading(dt, height)
# readings.append(reading)
readings = [
ir_reading.IRReading(
dt_reading=datetime.datetime.fromisoformat(
row[0]).replace(tzinfo=pytz.utc),
height=float(row[2]))
for row in reader
]
print(f" First reading: {ir_reading.get_formatted_reading(readings[0])}")
# Text file is in chronological order.
print(f" Found {len(readings)} readings.")
return readings
def get_readings_arch_format(data_file):
"""Get all readings from an IR gauge text file.
Uses the archival format, distinct from the hx and weekly formats:
USGS 15087700 2016-02-09 15:45 AKST 20.86 A 54.0 A
Uses AKST and AKDT.
"""
print(f"\nReading historical data from {data_file}.")
with open(data_file) as f:
reader = csv.reader(f, delimiter='\t')
# First line of data is on line 35.
# Scroll through header lines.
for row in reader:
if "5s 15s 20d 6s 14n 10s 14n 10s" in row[0]:
break
readings = []
for row in reader:
row = row[0].split(' ')
# print(f"Row: {row}")
try:
datetime_str = row[2]
dt_ak = datetime.datetime.fromisoformat(datetime_str)
# dt is either AKST or AKDT right now.
tz_str = row[3]
if tz_str == 'AKST':
dt_utc = dt_ak + datetime.timedelta(hours=9)
elif tz_str == 'AKDT':
dt_utc = dt_ak + datetime.timedelta(hours=8)
dt_utc = dt_utc.replace(tzinfo=pytz.utc)
height = float(row[4][:5])
reading = ir_reading.IRReading(dt_utc, height)
readings.append(reading)
except ValueError:
print("Error reading line:", row)
print(f" First reading: {ir_reading.get_formatted_reading(readings[0])}")
# Text file is in chronological order.
print(f" Found {len(readings)} readings.")
return readings
def get_relevant_slide(readings, known_slides):
"""If there's a relevant slide during this set of readings,
return that slide.
Otherwise, return None.
"""
relevant_slide = None
for slide in known_slides:
if readings[0].dt_reading <= slide.dt_slide <= readings[-1].dt_reading:
print(f"Slide in range: {slide.name} - {slide.dt_slide}")
relevant_slide = slide
break
return relevant_slide
def get_notification_time(critical_points, relevant_slide):
"""For a slide in a set of readings, calculate the time between the first
critical point and the slide event.
"""
notification_time = relevant_slide.dt_slide - critical_points[0].dt_reading
notification_time_min = int(notification_time.total_seconds() / 60)
print(f"Notification time: {notification_time_min} minutes")
return notification_time_min
def plot_data(readings, critical_points=[], known_slides=[],
root_output_directory='', auto_open=False):
"""Plot IR gauge data, with critical points in red. Known slide
events are indicated by a vertical line at the time of the event.
"""
# DEV: Move this to utils.plot_utils.py when possible.
# DEV: This fn should receive any relevant slides, it shouldn't do any
# data processing.
print("\nPlotting data")
if critical_points:
print(f"First critical point: {ir_reading.get_formatted_reading(critical_points[0])}")
# Plotly considers everything UTC. Send it strings, and it will
# plot the dates as they read.
datetimes = [str(reading.dt_reading.astimezone(aktz)) for reading in readings]
heights = [reading.height for reading in readings]
critical_datetimes = [str(reading.dt_reading.astimezone(aktz)) for reading in critical_points]
critical_heights = [reading.height for reading in critical_points]
min_height = min([reading.height for reading in readings])
max_height = max([reading.height for reading in readings])
y_min, y_max = min_height - 0.5, max_height + 0.5
# Is there a slide in this date range?
relevant_slide = get_relevant_slide(readings, known_slides)
if relevant_slide:
try:
notification_time = get_notification_time(critical_points, relevant_slide)
except IndexError:
notification_time = 0
# Use relevant slide or first critical point to set date for title.
if relevant_slide and critical_points:
slide_time = relevant_slide.dt_slide.astimezone(aktz)
title_date_str = slide_time.strftime('%m/%d/%Y')
elif relevant_slide:
slide_time = relevant_slide.dt_slide.astimezone(aktz)
title_date_str = slide_time.strftime('%m/%d/%Y')
# Also build slide label here, for slides with no critical points.
slide_time_str = slide_time.strftime('%m/%d/%Y %H:%M:%S')
slide_label = f" {relevant_slide.name} - {slide_time_str}"
slide_label += f"\n Notification time: {notification_time} minutes"
elif critical_points:
dt_title = critical_points[0].dt_reading.astimezone(aktz)
title_date_str = dt_title.strftime('%m/%d/%Y')
else:
# dt_title = datetimes[0].dt_reading.astimezone(aktz)
title_date_str = datetimes[0]
data = [
{
# Non-critical gauge height data.
'type': 'scatter',
'x': datetimes,
'y': heights
}
]
if critical_points:
label_dt_str = critical_points[0].dt_reading.astimezone(aktz).strftime(
'%m/%d/%Y %H:%M:%S')
data.append(
{
# Critical points.
'type': 'scatter',
'x': critical_datetimes,
'y': critical_heights,
'marker': {'color': 'red'}
}
)
data.append(
{
# Label for first critical point.
'type': 'scatter',
'x': [critical_datetimes[0]],
'y': [critical_heights[0]],
'text': f"{label_dt_str} ",
'mode': 'text',
'textposition': 'middle left'
}
)
if relevant_slide:
slide_time_str = relevant_slide.dt_slide.astimezone(aktz).strftime(
'%m/%d/%Y %H:%M:%S')
data.append(
{
# This is a vertical line representing a slide.
'type': 'scatter',
'x': [str(relevant_slide.dt_slide.astimezone(aktz)), str(relevant_slide.dt_slide.astimezone(aktz))],
'y': [y_min+0.5, y_max-0.25],
'marker': {'color': 'green'},
'mode': 'lines'
}
)
data.append(
{
# Label for the slide.
'type': 'scatter',
'x': [str(relevant_slide.dt_slide.astimezone(aktz))],
'y': [y_min + 1],
'text': f' {relevant_slide.name} - {slide_time_str}',
'mode': 'text',
'textposition': 'middle right'
}
)
data.append(
{
# Label for notification time.
'type': 'scatter',
'x': [str(relevant_slide.dt_slide.astimezone(aktz))],
'y': [y_min + 0.85],
'text': f" Notification time: {notification_time} minutes",
'mode': 'text',
'textposition': 'middle right'
}
)
my_layout = {
'title': f"Indian River Gauge Readings, {title_date_str}",
'xaxis': {
'title': 'Date/ Time',
},
'yaxis': {
'title': 'River height (ft)',
'range': [y_min, y_max]
}
}
fig = {'data': data, 'layout': my_layout}
filename = f"{root_output_directory}current_ir_plots/ir_plot_{readings[-1].dt_reading.__str__()[:10]}.html"
offline.plot(fig, filename=filename, auto_open=auto_open)
print("\nPlotted data.")
def plot_data_static(readings, critical_points=[], known_slides=[],
filename=None, root_output_directory=''):
"""Plot IR gauge data, with critical points in red. Known slide
events are indicated by a vertical line at the time of the event.
"""
# DEV: This fn should receive any relevant slides, it shouldn't do any
# data processing.
# Also, ther should be one high-level plot_data() function that
# takes an arg about what kind of plot to make, and then calls
# plot_data_interactive() or plot_data_static(), or both.
# Matplotlib accepts datetimes as x values, so it should be handling
# timezones appropriately.
datetimes = [reading.dt_reading.astimezone(aktz) for reading in readings]
heights = [reading.height for reading in readings]
critical_datetimes = [reading.dt_reading.astimezone(aktz) for reading in critical_points]
critical_heights = [reading.height for reading in critical_points]
min_height = min([reading.height for reading in readings])
max_height = max([reading.height for reading in readings])
# Build a set of future readings, once every 15 minutes for the next
# 6 hours.
# DEV: May want to only look ahead 4.5 hrs; looking farther ahead
# than the critical 5-hour period seems less meaningful.
# DEV: Doing some imports here, because this will be moved to
# analysis_utils
# import datetime
# from .ir_reading import IRReading
interval = datetime.timedelta(minutes=15)
future_readings = []
new_reading_dt = readings[-1].dt_reading + interval
for _ in range(18):
new_reading = ir_reading.IRReading(new_reading_dt, 23.0)
future_readings.append(new_reading)
new_reading_dt += interval
future_datetimes = [r.dt_reading.astimezone(aktz) for r in future_readings]
future_heights = [r.height for r in future_readings]
# What are the future critical points?
# These are the heights that would result in 5-hour total rise and
# average rate matching critical values.
# These are the minimum values needed to become, or remain, critical.
# DEV: Replace all 0.5 and 2.5 with M_CRITICAL and CRITICAL_RISE
min_cf_readings = []
latest_reading = readings[-1]
for reading in future_readings:
dt_lookback = reading.dt_reading - datetime.timedelta(hours=5)
# Get minimum height from last 5 hours of readings, including future readings.
# print(reading.dt_reading - datetime.timedelta(hours=5))
relevant_readings = [r for r in readings
if r.dt_reading >= dt_lookback]
relevant_readings += min_cf_readings
critical_height = min([r.height for r in relevant_readings]) + 2.5
# Make sure critical_height also gives a 5-hour average rise at least
# as great as M_CRITICAL. Units are ft/hr.
m_avg = (critical_height - relevant_readings[0].height) / 5
if m_avg < 0.5:
# The critical height satisfies total rise, but not sustained rate
# of rise. Bump critical height so it satisfies total rise and
# rate of rise.
critical_height = 5 * 0.5 + relevant_readings[0].height
new_reading = ir_reading.IRReading(reading.dt_reading, critical_height)
min_cf_readings.append(new_reading)
min_cf_datetimes = [r.dt_reading.astimezone(aktz) for r in min_cf_readings]
min_cf_heights = [r.height for r in min_cf_readings]
# What would the critical points have been over the last 6 hours?
# This shows how close conditions were to being critical over the
# previous 6 hours.
dt_first_min_prev_reading = latest_reading.dt_reading - datetime.timedelta(hours=12)
min_crit_prev_readings = []
prev_datetimes = [r.dt_reading for r in readings
if r.dt_reading >= dt_first_min_prev_reading]
for dt in prev_datetimes:
dt_lookback = dt - datetime.timedelta(hours=5)
# Get minimum height from last 5 hours of readings.
relevant_readings = [r for r in readings
if (r.dt_reading >= dt_lookback) and (r.dt_reading < dt)]
critical_height = min([r.height for r in relevant_readings]) + 2.5
# Make sure critical_height also gives a 5-hour average rise at least
# as great as M_CRITICAL. Units are ft/hr.
m_avg = (critical_height - relevant_readings[0].height) / 5
if m_avg < 0.5:
# The critical height satisfies total rise, but not sustained rate
# of rise. Bump critical height so it satisfies total rise and
# rate of rise.
critical_height = 5 * 0.5 + relevant_readings[0].height
# reading.height = critical_height
reading = ir_reading.IRReading(dt, critical_height)
min_crit_prev_readings.append(reading)
min_crit_prev_datetimes = [r.dt_reading.astimezone(aktz)
for r in min_crit_prev_readings]
min_crit_prev_heights = [r.height for r in min_crit_prev_readings]
y_min, y_max = min_height - 0.5, max_height + 0.5
# Is there a slide in this date range?
relevant_slide = get_relevant_slide(readings, known_slides)
if relevant_slide:
try:
notification_time = get_notification_time(critical_points, relevant_slide)
except IndexError:
notification_time = 0
else:
# Build slide label here.
slide_time = relevant_slide.dt_slide.astimezone(aktz)
slide_time_str = slide_time.strftime('%m/%d/%Y %H:%M:%S')
slide_label = f" {relevant_slide.name} - {slide_time_str}"
slide_label += f"\n Notification time: {notification_time} minutes"
# Use relevant slide or first critical point to set date for title.
if relevant_slide and critical_points:
dt_title = slide_time
title_date_str = slide_time.strftime('%m/%d/%Y')
elif relevant_slide:
slide_time = relevant_slide.dt_slide.astimezone(aktz)
title_date_str = slide_time.strftime('%m/%d/%Y')
# Also build slide label here, for slides with no critical points.
slide_time_str = slide_time.strftime('%m/%d/%Y %H:%M:%S')
slide_label = f" {relevant_slide.name} - {slide_time_str}"
slide_label += f"\n Notification time: {notification_time} minutes"
dt_title = slide_time
elif critical_points:
dt_title = critical_points[0].dt_reading.astimezone(aktz)
title_date_str = dt_title.strftime('%m/%d/%Y')
else:
dt_title = datetimes[0].astimezone(aktz)
title_date_str = dt_title.strftime('%m/%d/%Y')
# DEV notes for building visualization:
# needs more times labeled on x axis;
# needs better format for datetimes on x axis;
# Thinner lines, alpha adjustment.
# Build static plot image.
plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots(figsize=(10, 6), dpi=128)
# Always plot on an absolute y scale.
ax.set_ylim([20.0, 27.5])
# Add river heights for 48-hr period.
ax.plot(datetimes, heights, c='blue', alpha=0.8, linewidth=1)
# Add critical points if relevant.
if critical_points:
ax.plot(critical_datetimes, critical_heights, c='red', alpha=0.6,
linewidth=1)
ax.scatter(critical_datetimes, critical_heights, c='red', alpha=0.8,
s=15)
# cp_label = critical_points[0].dt_reading.astimezone(aktz).strftime(
# '%m/%d/%Y %H:%M:%S')
label_time = critical_points[0].dt_reading.astimezone(aktz)
cp_label = label_time.strftime('%m/%d/%Y %H:%M:%S') + ' '
ax.text(label_time, critical_heights[0], cp_label,
horizontalalignment='right')
# Plot minimum future critical readings.
# Plot these points, and shade to max y value.
ax.plot(min_cf_datetimes, min_cf_heights, c='red', alpha=0.4)
ax.fill_between(min_cf_datetimes, min_cf_heights, 27.5, color='red', alpha=0.2)
# Plot previous critical readings, and shade to max y value.
ax.plot(min_crit_prev_datetimes, min_crit_prev_heights, c='red', alpha=0.3)
ax.fill_between(min_crit_prev_datetimes, min_crit_prev_heights, 27.5,
color='red', alpha=0.1)
# Add vertical line for slide if applicable.
if relevant_slide:
ax.axvline(x=slide_time, ymin=0.05, ymax=0.98, c='green', alpha=0.8,
linewidth=1)
# Label slide.
ax.text(slide_time, y_min+1, slide_label)
# Set chart and axes titles, and other formatting.
# title = f"Indian River Gauge Readings, {title_date_str}"
# This title works for animation.
ts_title = dt_title.strftime("%H:%M:%S")
title = f"Indian River Gauge Readings, {title_date_str}, {ts_title}"
ax.set_title(title, loc='left')
ax.set_xlabel('', fontsize=16)
ax.set_ylabel("River height (ft)")
# # Format major x ticks.
# xaxis_maj_fmt = mdates.DateFormatter('%H:%M\n%b %d, %Y')
# ax.xaxis.set_major_formatter(xaxis_maj_fmt)
# # Label day every 12 hours; 0.5 corresponds to half a day
# ax.xaxis.set_major_locator(ticker.MultipleLocator(0.5))
# # Format minor x ticks.
# xaxis_min_fmt = mdates.DateFormatter('%H:%M')
# ax.xaxis.set_minor_formatter(xaxis_min_fmt)
# # Label every 6 hours:
# ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.25))
# # Format dates that appear in status bar when hovering.
# hover_fmt = mdates.DateFormatter('%H:%M %b %d, %Y')
# ax.fmt_xdata = hover_fmt
# # Try building my own tick labels.
# my_ticklabels = []
# for dt in datetimes:
# dt_label = dt.strftime('%H:%M\n%b %d, %Y')
# times_to_label = ['00:00', '06:00', '12:00', '18:00']
# use_label = any(time in dt_label for time in times_to_label)
# if use_label:
# my_ticklabels.append(dt_label)
# else:
# my_ticklabels.append('')
# # Use these tick labels.
# ax.set_xticklabels(my_ticklabels, minor=False)
# Make major and minor x ticks small.
ax.tick_params(axis='x', which='both', labelsize=8)
# DEV: Uncomment this to see interactive plots during dev work,
# rather than opening file images.
# plt.show()
# Save to file.
if not filename:
filename = f"{root_output_directory}current_ir_plots/ir_plot_{readings[-1].dt_reading.__str__()[:10]}.png"
plt.savefig(filename)
print(f" saved: {filename}")
# Close figure, especially helpful when rendering many frames for animation.
plt.close('all')
if __name__ == '__main__':
"""This file can be run directly with a data file to generate a plot
for a short period of data. The data files listed here are not included
in the online repository, but are left here as a sample of how you might
run this file directly.
"""
# Load data.
data_file = '../ir_data/irva_akdt_092019.txt'
data_file = '../ir_data/irva_akdt_100619.txt'
data_file = '../ir_data/irva_utc_112219.txt'
# data_file = '../ir_data/irva_akdt_082115.txt'
# readings = get_readings_weekly_format(data_file, 2019)
readings = get_readings_weekly_format_utc(data_file, 2019)
# plot_data(readings)
# Find critical points.
critical_points = a_utils.get_critical_points(readings)
for cp in critical_points:
print(get_formatted_reading(cp))
# plot_data_critical(readings, critical_points)
# Get known slides.
slides_file = 'known_slides/known_slides.json'
known_slides = SlideEvent.load_slides(slides_file)
# Plot data, critical points, and slide event.
plot_data(readings, critical_points, known_slides)