-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreranker.py
248 lines (213 loc) · 12.6 KB
/
reranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import argparse
import random
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModel, AutoModelForSequenceClassification, AutoTokenizer
def data_processing(args):
train_data = pd.read_csv(args.train_data_path)
val_data = pd.read_csv(args.val_data_path)
train_dict = {}
for question, context, retrieved_contexts, file_name in zip(train_data.question, train_data.context, train_data.retrieved_contexts, train_data.file_name) :
train_dict.setdefault(file_name, [])
retrieved_contexts = eval(retrieved_contexts)
if context in retrieved_contexts.values() :
train_dict[file_name].append({'question':question, 'retrieved_contexts':retrieved_contexts, 'answer':context, 'retrieve_success':True})
val_dict = {}
for question, context, retrieved_contexts, file_name in zip(val_data.question, val_data.context, val_data.retrieved_contexts, val_data.file_name) :
val_dict.setdefault(file_name, [])
retrieved_contexts = eval(retrieved_contexts)
if context in retrieved_contexts.values() :
val_dict[file_name].append({'question':question, 'retrieved_contexts':retrieved_contexts, 'answer':context, 'retrieve_success':True})
return train_dict, val_dict
class CustomAutoModelForSequenceClassification(nn.Module):
def __init__(self, model_name: str, num_labels: int):
super(CustomAutoModelForSequenceClassification, self).__init__()
self.config = AutoConfig.from_pretrained(model_name, num_labels=num_labels)
self.base_model = AutoModel.from_pretrained(model_name, config=self.config)
self.attention = nn.MultiheadAttention(embed_dim=self.config.hidden_size, num_heads=8)
self.layer_norm = nn.LayerNorm(self.config.hidden_size)
self.dense = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.dropout = nn.Dropout(self.config.hidden_dropout_prob)
self.out_proj = nn.Linear(self.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, labels=None, token_selected=False):
outputs = self.base_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
hidden_states = outputs.last_hidden_state # Shape: (batch_size, seq_length, hidden_size)
if token_selected:
if attention_mask is not None:
attention_mask = attention_mask.unsqueeze(1).repeat(1, hidden_states.size(1), 1)
attention_mask = attention_mask.float().masked_fill(attention_mask == 0, float('-inf'))
hidden_states = hidden_states.permute(1, 0, 2)
attn_output, _ = self.attention(hidden_states, hidden_states, hidden_states, attn_mask=attention_mask)
hidden_states = attn_output.permute(1, 0, 2)
hidden_states = self.layer_norm(hidden_states + outputs.last_hidden_state)
cls_representation = hidden_states[:, 0, :]
x = self.dense(cls_representation)
x = torch.tanh(x)
x = self.dropout(x)
logits = self.out_proj(x)
loss = None
if labels is not None:
loss_fn = nn.MSELoss()
loss = loss_fn(logits.view(-1), labels.view(-1))
return {"loss": loss, "logits": logits}
def average_precision_at_k(true_index, top_k_indices):
if true_index in top_k_indices:
rank = np.where(top_k_indices == true_index)[0][0] + 1
return 1.0 / rank
else:
return 0.0
def sample_with_answer(retrieved_contexts, answer, n):
if answer not in retrieved_contexts:
retrieved_contexts.append(answer)
other_contexts = [context for context in retrieved_contexts if context != answer]
sampled_contexts = random.sample(other_contexts, min(n - 1, len(other_contexts)))
sampled_contexts.append(answer)
random.shuffle(sampled_contexts)
return sampled_contexts
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--train_data_path", type=str, default='./sample_data/reranker/train.csv')
parser.add_argument("--val_data_path", type=str, default='./sample_data/reranker/val.csv')
parser.add_argument("--from_pretrained", type=str, default='BAAI/bge-m3', help='model_name or local path')
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--lr", type=float, default=1e-5)
parser.add_argument("--negative_size", type=int, default=3)
parser.add_argument("--token_k", type=int, default=3)
parser.add_argument("--check_step", type=int, default=100)
parser.add_argument("--save_step", type=int, default=1000)
parser.add_argument("--quit_cnt", type=int, default=3)
parser.add_argument("--save_dir", type=str, default='./reranker_trained')
args = parser.parse_args()
# Data load & processing
train_dict, val_dict = data_processing(args)
# Define re-ranker
tokenizer = AutoTokenizer.from_pretrained(args.from_pretrained)
model = CustomAutoModelForSequenceClassification(model_name=args.from_pretrained, num_labels=1)
model.cuda()
# Hyperparameters
epochs = args.epochs; lr = args.lr; negative_size = args.negative_size; token_k = args.token_k
check_step = args.check_step; save_step = args.save_step; quit_cnt = args.quit_cnt
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
save_dir = args.save_dir
os.makedirs(save_dir, exist_ok=True)
model.train()
optimizer.zero_grad()
fname_list = list(train_dict.keys())
check_cnt = 0; stop_cnt = 0; prev_map = -np.inf
for epoch in range(epochs) :
if stop_cnt >= quit_cnt :
break
for fname in fname_list :
if stop_cnt >= quit_cnt :
break
pairs = train_dict[fname]
for pair in pairs :
check_cnt += 1
retrieve_success = pair['retrieve_success']
question = pair['question']
retrieved_contexts = pair['retrieved_contexts']
retrieved_contexts = list(retrieved_contexts.values())
answer = pair['answer']
if retrieve_success :
retrieved_contexts = sample_with_answer(retrieved_contexts, answer, negative_size+1)
answer_index = retrieved_contexts.index(answer)
for idx, context_ in enumerate(retrieved_contexts) :
loss = 0.0
torch.cuda.empty_cache()
# score 1
text = f'{question} {tokenizer.sep_token} {context_}'
batch = tokenizer.batch_encode_plus([text],
max_length=tokenizer.model_max_length,
padding='longest',
truncation=True,
return_tensors="pt")
input_ids = batch['input_ids'].cuda()
if answer_index == idx :
labels = [1]
else :
labels = [0]
labels = torch.Tensor([labels]).reshape(-1, 1).cuda()
loss_ = model(input_ids=input_ids,
labels=labels,
token_selected=False)['loss']
loss += (loss_ / len(retrieved_contexts)) * 0.7
input_ids.detach().cpu(); del input_ids
# score 2
torch.cuda.empty_cache()
q_input_ids = torch.LongTensor([tokenizer.encode(question)[1:-1]]).cuda()
d_input_ids = torch.LongTensor([tokenizer.encode(context_)[1:-1][:tokenizer.model_max_length]]).cuda()
sim_matrix = torch.matmul(model.base_model(q_input_ids)['last_hidden_state'].squeeze(0),
model.base_model(d_input_ids)['last_hidden_state'].squeeze(0).T)
_, top_indices = torch.topk(sim_matrix, token_k, dim=1)
token_selected = d_input_ids.squeeze(0)[top_indices.reshape(-1)]
token_selected = tokenizer.decode(token_selected)
text = f'{question} {tokenizer.sep_token} {token_selected}'
batch = tokenizer.batch_encode_plus([text],
max_length=tokenizer.model_max_length,
padding='longest',
truncation=True,
return_tensors="pt")
input_ids = batch['input_ids'].cuda()
loss_ = model(input_ids=input_ids,
labels=labels,
token_selected=True)['loss']
loss += (loss_ / len(retrieved_contexts)) * 0.3
loss.backward()
q_input_ids.detach().cpu(); del q_input_ids
d_input_ids.detach().cpu(); del d_input_ids
sim_matrix.detach().cpu(); del sim_matrix
input_ids.detach().cpu(); del input_ids
else :
optimizer.step()
optimizer.zero_grad()
if (check_cnt) % check_step == 0:
print(check_cnt, loss.item())
if check_cnt % save_step == 0 :
print('Evaluation..', check_cnt)
model.eval()
ap_k_lst = []
for fname in val_dict :
pairs = val_dict[fname]
for pair in pairs :
retrieve_success = pair['retrieve_success']
if retrieve_success :
question = pair['question']
retrieved_contexts = pair['retrieved_contexts']
retrieved_contexts = list(retrieved_contexts.values())
answer = pair['answer']
answer_index = retrieved_contexts.index(answer)
scores = []
for context_ in retrieved_contexts :
text = f'{question} {tokenizer.sep_token} {context_}'
batch = tokenizer.batch_encode_plus([text],
max_length=tokenizer.model_max_length,
padding='longest',
truncation=True,
return_tensors="pt")
input_ids = batch['input_ids'].cuda()
with torch.no_grad() :
output = model(input_ids)['logits']
score = float(output.detach().cpu().numpy()[0][0])
scores.append(score)
sorted_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)
sorted_indices = np.array(sorted_indices)
ap_k = average_precision_at_k(answer_index, sorted_indices)
ap_k_lst.append(ap_k)
map_k = np.mean(ap_k_lst)
print('Step', check_cnt, '\t', map_k)
if map_k > prev_map :
torch.save(model.state_dict(), f'{save_dir}/best.pt')
print(f'[saved] {save_dir}/best.pt')
prev_map = map_k
stop_cnt = 0
else :
print(f'{stop_cnt}: stop_cnt')
stop_cnt += 1
model.train()