-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathstats.py
219 lines (174 loc) · 7.87 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# ========================================================================
# Copyright 2018 Emory University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========================================================================
import glob
import json
import os
from collections import Counter, OrderedDict
from tabulate import tabulate
__author__ = 'Jinho D. Choi'
SEASON_ID = 'season_id'
EPISODES = 'episodes'
EPISODE_ID = 'episode_id'
EPISODE = 'episode'
SCENES = 'scenes'
SCENE_ID = 'scene_id'
UTTERANCES = 'utterances'
UTTERANCE_ID = 'utterance_id'
SPEAKERS = 'speakers'
TRANSCRIPT = 'transcript'
TRANSCRIPT_WITH_NOTE = 'transcript_with_note'
TOKENS = 'tokens'
TOKENS_WITH_NOTE = 'tokens_with_note'
CHARACTER_ENTITIES = 'character_entities'
EMOTION = 'emotion'
CAPTION = 'caption'
def ordered_print(json_file, s=None):
def pair(key, d):
s = d[key]
if isinstance(s, str): s = ' '.join(s.split())
return key, s
if s is None: s = json.load(open(json_file))
season = OrderedDict([pair(SEASON_ID, s), pair(EPISODES, s)])
if len(s) != len(season): print('Error: 0')
episodes = season[EPISODES]
for i, e in enumerate(episodes):
episode = OrderedDict([pair(EPISODE_ID, e), pair(SCENES, e)])
if len(e) != len(episode): print('Error: 1')
episodes[i] = episode
scenes = episode[SCENES]
for j, c in enumerate(scenes):
scene = OrderedDict([pair(SCENE_ID, c), pair(UTTERANCES, c)])
if len(c) != len(scene): print('Error: 2')
scenes[j] = scene
utterances = scene[UTTERANCES]
for k, u in enumerate(utterances):
utterance = [
pair(UTTERANCE_ID, u),
pair(SPEAKERS, u),
pair(TRANSCRIPT, u),
pair(TRANSCRIPT_WITH_NOTE, u),
pair(TOKENS, u),
pair(TOKENS_WITH_NOTE, u)]
if CHARACTER_ENTITIES in u: utterance.append(pair(CHARACTER_ENTITIES, u))
if EMOTION in u: utterance.append(pair(EMOTION, u))
if CAPTION in u: utterance.append(pair(CAPTION, u))
if len(u) != len(utterance): print('Error: 3')
utterances[k] = OrderedDict(utterance)
with open(json_file+'.v2','w') as fout:
json.dump(season, fout, indent=4)
def general_stats(json_file):
num_scenes = 0
num_utterances = 0
num_utterances_wn = 0
num_sentences = 0
num_sentences_wn = 0
num_tokens = 0
num_tokens_wn = 0
all_speakers = set()
season = json.load(open(json_file))
episodes = season[EPISODES]
for episode in episodes:
scenes = episode[SCENES]
num_scenes += len(scenes)
for scene in scenes:
utterances = scene[UTTERANCES]
num_utterances_wn += len(utterances)
for utterance in utterances:
all_speakers.update(utterance[SPEAKERS])
tokens = utterance[TOKENS]
if tokens:
num_utterances += 1
num_sentences += len(tokens)
num_tokens += sum([len(t) for t in tokens])
tokens_wn = utterance[TOKENS_WITH_NOTE] or tokens
num_sentences_wn += len(tokens_wn)
num_tokens_wn += sum([len(t) for t in tokens_wn])
return [season['season_id'], len(episodes), num_scenes, num_utterances, num_sentences, num_tokens, all_speakers, num_utterances_wn, num_sentences_wn, num_tokens_wn]
def print_general_stats(json_dir):
all_speakers = set()
print('\t'.join(['Season ID', 'Episodes', 'Scenes', 'Utterances', 'Sentences', 'Tokens', 'Speakers']))
for json_file in sorted(glob.glob(os.path.join(json_dir, '*.json'))):
l = general_stats(json_file)
all_speakers.update(l[6])
l[6] = len(l[6])
print('\t'.join(map(str, l)))
print('All speakers: %s' % (len(all_speakers)))
def entity_stats(json_dir):
g_speaker_list = []
g_entity_list = []
table_header = ['Season ID', 'Episodes', 'Scenes', 'Utterances', 'Tokens', 'Speakers', 'Entities', 'Singular', 'Plural', 'Mentions']
table_data = []
for k, json_file in enumerate(sorted(glob.glob(os.path.join(json_dir, '*.json')))):
if k >= 4: break
speaker_list = []
entity_list = []
num_clusters = 0
num_scenes = 0
num_utterances = 0
num_tokens = 0
num_mentions = 0
num_singular_mentions = 0
num_plural_mentions = 0
entity_types = [0, 0, 0, 0, 0]
season = json.load(open(json_file))
episodes = season[EPISODES]
for episode in episodes:
scenes = episode[SCENES]
for scene in scenes:
annotated = False
cluster_set = set()
for utterance in scene[UTTERANCES]:
if CHARACTER_ENTITIES in utterance and len(utterance[TOKENS]) > 0:
annotated = True
num_utterances += 1
num_tokens += len(utterance[TOKENS])
speaker_list.extend(utterance[SPEAKERS])
for character_entities in utterance[CHARACTER_ENTITIES]:
# num_mentions += len(character_entities)
for entities in character_entities:
if 'Non-Entity' in entities: continue
for e in entities[2:]:
entity_list.append(e)
cluster_set.add(e)
if e in {'Girl', 'Girl 1', 'Girl 2', 'Guy', 'Guy 1', 'Man', 'Man 1', 'Man 2', 'Man 3', 'Person 1', 'Person 2', 'Person 3', 'Woman', 'Woman 1', 'Woman 2', 'Woman 3'}:
entity_types[2] += 1
elif e in {'Monica Geller', 'Ross Geller', 'Rachel Green', 'Joey Tribbiani', 'Phoebe Buffay', 'Chandler Bing'}:
entity_types[0] += 1
elif e == '#GENERAL#':
entity_types[3] += 1
elif e == '#OTHER#':
entity_types[4] += 1
else:
entity_types[1] += 1
if len(entities) == 3: num_singular_mentions += 1
else: num_plural_mentions += 1
num_mentions += 1
if annotated: num_scenes += 1
num_clusters += len(cluster_set)
g_speaker_list.extend(speaker_list)
g_entity_list.extend(entity_list)
table_data.append([season[SEASON_ID], len(episodes), num_scenes, num_utterances, num_tokens, len(set(speaker_list)), num_singular_mentions, num_plural_mentions, num_mentions, num_clusters, len(set(entity_list))])
print(tabulate(table_data, headers=table_header, tablefmt='plain'))
print('\nAll speakers: %s' % (len(set(g_speaker_list))))
print('All entities: %s' % (len(set(g_entity_list))))
if __name__ == '__main__':
json_dir = '../json'
# print_general_stats(json_dir)
entity_stats(json_dir)
#
# # for json_file in sorted(glob.glob(os.path.join(json_dir, '*.json'))):
# # print(json_file)
# # ordered_print(json_file)