-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnetAcc.py
114 lines (95 loc) · 3.74 KB
/
UnetAcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import json
import os
import cv2
import numpy as np
from sklearn.metrics import confusion_matrix
import csv
import torch
def drawCounters(counters, img, color=(0, 0, 255)):
for counter in counters:
cv2.rectangle(img, (counter[1], counter[0]), (counter[3], counter[2]), color, 4)
return img
def drawFillCounters(counters, img):
for counter in counters:
cv2.rectangle(img, (counter[1], counter[0]), (counter[3], counter[2]), (255, 255, 255), -1)
return img
def yoloBoxToCv2(detection, shape):
height = shape[0]
width = shape[1]
center_x = int(detection[1] * width)
center_y = int(detection[2] * height)
w = int(detection[3] * width)
h = int(detection[4] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
return [y, x, y+h, x+w]
def countIOU(rec1, rec2):
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
sum_area = S_rec1 + S_rec2
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
if left_line >= right_line or top_line >= bottom_line:
return 0, -1, S_rec1, S_rec2
else:
intersect = (right_line - left_line) * (bottom_line - top_line)
return (intersect / (sum_area - intersect))*1.0, intersect, S_rec1, S_rec2
def testMask(preImage, gtImage):
preImage = preImage[:,:,0].reshape((-1))//255
gtImage = gtImage[:,:,0].reshape((-1))//255
preImage_torch = torch.from_numpy(preImage).cuda()
gtImage_torch = torch.from_numpy(gtImage).cuda()
TP = torch.sum((gtImage_torch == 1) & (preImage_torch == 1)).item() #gpu version
FN = torch.sum((gtImage_torch == 0) & (preImage_torch == 1)).item()
FP = torch.sum((gtImage_torch == 1) & (preImage_torch == 0)).item()
TN = torch.sum((gtImage_torch == 0) & (preImage_torch == 0)).item()
# accuracy = confusion_matrix(preImage, gtImage, labels=[1, 0]) #cpu version
# TP = accuracy[0,0]
# FN = accuracy[0,1]
# FP = accuracy[1,0]
# TN = accuracy[1,1]
# print(accuracy)
P = TP/(TP+FP)
R = TP/(TP+FN)
F1 = 2*P*R/(P+R)
Acc = (TP+TN)/(TP+TN+FP+FN)
print("Accuracy =", Acc)
print("Precision=", P)
print("Recall =", R)
print("F1 =", F1)
Acc = "{:.4f}".format(Acc*100)
P = "{:.4f}".format(P*100)
R = "{:.4f}".format(R*100)
F1 = "{:.4f}".format(F1*100)
writer.writerow([Acc, P, R, F1])
UnetImgFlooder = "./result/marge/Unet/"
GTFlooders = "./groundtruth/marge"
storeFlooder = "./storeImg/"
with open('result.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
for GTFlooderName in os.listdir(GTFlooders):
print(GTFlooderName)
GTPath = os.path.join(GTFlooders, GTFlooderName)
ImgPath = os.path.join(GTPath, GTFlooderName + ".jpg")
GTTxtPath = os.path.join(GTPath, GTFlooderName + ".txt")
classNamePath = os.path.join(GTPath, "classes.txt")
UnetImgPath = os.path.join(UnetImgFlooder, GTFlooderName + ".png")
print(ImgPath)
image = cv2.imread(ImgPath)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
imagePreMask = cv2.imread(UnetImgPath)#讀取預測結果
# print(imagePreMask)
with open(GTTxtPath,'r') as f: #讀取真實結果
fStrs = f.readlines()
fStrs = [fStr.replace("\n", "") for fStr in fStrs]
yoloRects = [[float(i) for i in fStr.split(" ")] for fStr in fStrs]
cv2Rects = [yoloBoxToCv2(i, image.shape) for i in yoloRects]
# image = drawCounters(cv2Rects, image, color=(0, 0, 255))
imageMaskGt = np.zeros(image.shape)
imageMaskGt = drawFillCounters(cv2Rects, imageMaskGt)
testMask(imagePreMask, imageMaskGt)
# image = drawCounters(pairRectsA, image, color=(0, 255, 0))
cv2.imwrite(os.path.join(storeFlooder, GTFlooderName + ".jpg"), image)