forked from Cornell-RelaxML/QuIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgptq.py
116 lines (90 loc) · 3.57 KB
/
gptq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import math
import time
import torch
import torch.nn as nn
import transformers
from method import QuantMethod
from quant import *
DEBUG = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
class GPTQ(QuantMethod):
def fasterquant(self, blocksize=128, groupsize=-1, copy_H=False, debug_equiv=False):
W = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
# when check LDL and GPTQ equiv, need float64 for numerics
if not debug_equiv:
W = W.float()
full_W = W.clone()
tick = time.time()
if not self.quantizer.ready():
self.quantizer.find_params(W, weight=True)
# for saving H
if copy_H:
H = self.H.data.clone()
else:
H = self.H
# note: removed and put in QuantMethod
# dead = torch.diag(H) == 0
# H[dead, dead] = 1
# W[:, dead] = 0
# damp = percdamp * torch.mean(torch.diag(H))
# diag = torch.arange(self.columns, device=self.dev)
# H[diag, diag] += damp
Losses = torch.zeros_like(W)
Q = torch.zeros_like(W)
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if groupsize != -1:
if (i1 + i) % groupsize == 0:
self.quantizer.find_params(W[:, (i1 + i):(i1 + i +
groupsize)],
weight=True)
q = self.quantizer.quantize(w.unsqueeze(1)).flatten()
# q = quantize(w.unsqueeze(1), self.quantizer.scale,
# self.quantizer.zero,
# self.quantizer.maxq).flatten()
Q1[:, i] = q
Losses1[:, i] = (w - q)**2 / d**2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if DEBUG:
self.layer.weight.data[:, :i2] = Q[:, :i2]
self.layer.weight.data[:, i2:] = W[:, i2:]
print(torch.sum((self.layer(self.inp1) - self.out1)**2))
print(torch.sum(Losses))
torch.cuda.synchronize()
# print('time %.2f' % (time.time() - tick))
# print('error', torch.sum(Losses).item())
self.time = time.time() - tick
if isinstance(self.layer, transformers.Conv1D):
Q = Q.t()
self.layer.weight.data = Q.reshape(self.layer.weight.shape).to(
self.layer.weight.data.dtype)
if DEBUG:
print(torch.sum((self.layer(self.inp1) - self.out1)**2))
self.postproc()
self.error_compute(full_W, self.layer.weight.data)
# to preserve H for saveH
if not copy_H:
del self.H