-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
133 lines (95 loc) · 3.99 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""
The function is used to read song json file to insert the songs and artists data into database.
Args:
cur: the cursor object.
filepath: song data file path.
"""
# open song file
df = pd.read_json(filepath, lines = True)
# insert song record
song_data = df[['song_id', 'title', 'artist_id', 'year', 'duration']].values[0].tolist()
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[['artist_id', 'artist_name', 'artist_location', 'artist_latitude','artist_longitude']].values[0].tolist()
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""
The function is used to read log json file to create the time and users dimensional tables, as well as the songplays fact table.
Filter records by NextSong
Convert the ts timestamp column to datetime
Args:
cur: the cursor object.
filepath: log data file path.
"""
# open log file
df = pd.read_json(filepath, lines = True)
# filter by NextSong action
df = df[df['page'] == 'NextSong']
# convert timestamp column to datetime
t = pd.to_datetime(df['ts'], unit = 'ms')
# insert time data records
time_data = (t, t.dt.hour ,t.dt.day, t.dt.weekofyear, t.dt.month, t.dt.year, t.dt.weekday)
column_labels = ('start_time', 'hour', 'day', 'week', 'month', 'year', 'weekday')
time_df = pd.DataFrame.from_dict(dict(zip(column_labels, time_data)))
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[['userId', 'firstName', 'lastName', 'gender', 'level']]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (pd.to_datetime(row.ts, unit='ms'), row.userId, row.level, songid, artistid, row.sessionId, row.location, row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""
Function to get all matching data from dictionary
Args:
cur: the cursor object.
filepath: log data file path.
func: function to process
conn: database connection
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
"""
cur.execute("select * from song_plays WHERE song_id is not null and artist_id is not null")
results = cur.fetchall()
print("Result of `select * from song_plays WHERE song_id is not null and artist_id is not null`:")
print(results)
"""
conn.close()
if __name__ == "__main__":
main()