-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEventData.Rmd
286 lines (214 loc) · 10.4 KB
/
EventData.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
---
title: "UTDEventData Animated igraphs"
date: "2022-09-06"
output: html_document
---
## Summary
By utilizing the accompanying JSON file ("EventData.json"), this script will generate four igraphs for 2022 (January, February, March, and April) involving cooperation and conflict among the U.S., Ukraine, Turkey, Russia, India, Great Britain, Germany, and China. It will then produce a GIF so that the changes over time can be viewed in an animated format.
## Install Packages
```{r}
install.packages("jsonlite")
install.packages("jsonify")
install.packages("dplyr")
install.packages("igraph")
install.packages("pacman")
install.packages("magick")
```
## Load Libraries
```{r}
library(jsonlite)
library(jsonify)
library(dplyr)
library(igraph)
library(pacman)
library(magick)
```
## Create Plot for January 2022
```{r}
#Load JSON file and create dataframe
EventData <- fromJSON("EventData.json") %>% as.data.frame
#Create dataframe using "src_actor," "tgt_actor," "root_code," and "month" columns
df1 <- data.frame(EventData$data.src_actor, EventData$data.tgt_actor, EventData$data.root_code, EventData$data.month) |>
#Filter by desired month (January = '01'; February = '02'; March = '03'; April = '04')
filter(EventData.data.month %in% c('01')) |>
#Filter by cooperative and conflict root codes ("03" through "20")
filter(EventData.data.root_code %in% c('03', '04', '05', '06', '07', '08','09', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20')) |>
#Extract USA, DEU, GBR, RUS, UKR, CHN, IND, and TUR as actor-pairs from "src_actor" and "tgt_actor" columns
filter(EventData.data.src_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR')) |>
filter(EventData.data.tgt_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR'))
#Create dataframe sorted alphabetically over source actor (to take control back from igraph's node positioning)
df2 <- df1[order(df1$EventData.data.src_actor), , drop = FALSE]
#Create matrix
matrix <- as.matrix(df2)
#Create graph object
g <- graph_from_data_frame(matrix)
#Color edges
E(g)$color <- as.factor(E(g)$EventData.data.root_code)
#Color edges cyan for all cooperative root codes
E(g)[EventData.data.root_code %in% c("03", "04", "05", "06", "07", "08")]$color = "cyan"
#Color edges magenta for all conflict root codes
E(g)[EventData.data.root_code %in% c("09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20")]$color = "magenta"
#Color vertices
V(g)["USA"]$color <- "lightblue"
V(g)["DEU"]$color <- "lightblue"
V(g)["GBR"]$color <- "lightblue"
V(g)["TUR"]$color <- "lightblue"
V(g)["RUS"]$color <- "red"
V(g)["UKR"]$color <- "yellow"
#Generate/save plot
png("January_2022.png", width = 890, height = 750)
plot (g,
main = "Cooperation and Conflict by src_actor and tgt_actor: January 2022",
edge.arrow.size = 1,
edge.arrow.width = .6,
vertex.label.cex = 0.8,
layout=layout_in_circle)
legend("bottomleft", cex = 1.2, legend=c("Ukraine", "Russia", "NATO", "Cooperation", "Conflict"),fill=c("yellow","red","lightblue", "cyan", "magenta"))
dev.off()
```
## Create Plot for February 2022
```{r}
#Load JSON file and create dataframe
EventData <- fromJSON("EventData.json") %>% as.data.frame
#Create dataframe using "src_actor," "tgt_actor," "root_code," and "month" columns
df1 <- data.frame(EventData$data.src_actor, EventData$data.tgt_actor, EventData$data.root_code, EventData$data.month) |>
#Filter by desired month (January = '01'; February = '02'; March = '03'; April = '04')
filter(EventData.data.month %in% c('02')) |>
#Filter by cooperative and conflict root codes ("03" through "20")
filter(EventData.data.root_code %in% c('03', '04', '05', '06', '07', '08','09', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20')) |>
#Extract USA, DEU, GBR, RUS, UKR, CHN, IND, and TUR as actor-pairs from "src_actor" and "tgt_actor" columns
filter(EventData.data.src_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR')) |>
filter(EventData.data.tgt_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR'))
#Create dataframe sorted alphabetically over source actor (to take control back from igraph's node positioning)
df2 <- df1[order(df1$EventData.data.src_actor), , drop = FALSE]
#Create matrix
matrix <- as.matrix(df2)
#Create graph object
g <- graph_from_data_frame(matrix)
#Color edges
E(g)$color <- as.factor(E(g)$EventData.data.root_code)
#Color edges cyan for all cooperative root codes
E(g)[EventData.data.root_code %in% c("03", "04", "05", "06", "07", "08")]$color = "cyan"
#Color edges magenta for all conflict root codes
E(g)[EventData.data.root_code %in% c("09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20")]$color = "magenta"
#Color vertices
V(g)["USA"]$color <- "lightblue"
V(g)["DEU"]$color <- "lightblue"
V(g)["GBR"]$color <- "lightblue"
V(g)["TUR"]$color <- "lightblue"
V(g)["RUS"]$color <- "red"
V(g)["UKR"]$color <- "yellow"
#Generate/save plot
png("February_2022.png", width = 890, height = 750)
plot (g,
main = "Cooperation and Conflict by src_actor and tgt_actor: February 2022",
edge.arrow.size = 1,
edge.arrow.width = .6,
vertex.label.cex = 0.8,
layout=layout_in_circle)
legend("bottomleft", cex = 1.2, legend=c("Ukraine", "Russia", "NATO", "Cooperation", "Conflict"),fill=c("yellow","red","lightblue", "cyan", "magenta"))
dev.off()
```
## Create Plot for March 2022
```{r}
#Load JSON file and create dataframe
EventData <- fromJSON("EventData.json") %>% as.data.frame
#Create dataframe using "src_actor," "tgt_actor," "root_code," and "month" columns
df1 <- data.frame(EventData$data.src_actor, EventData$data.tgt_actor, EventData$data.root_code, EventData$data.month) |>
#Filter by desired month (January = '01'; February = '02'; March = '03'; April = '04')
filter(EventData.data.month %in% c('03')) |>
#Filter by cooperative and conflict root codes ("03" through "20")
filter(EventData.data.root_code %in% c('03', '04', '05', '06', '07', '08','09', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20')) |>
#Extract USA, DEU, GBR, RUS, UKR, CHN, IND, and TUR as actor-pairs from "src_actor" and "tgt_actor" columns
filter(EventData.data.src_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR')) |>
filter(EventData.data.tgt_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR'))
#Create dataframe sorted alphabetically over source actor (to take control back from igraph's node positioning)
df2 <- df1[order(df1$EventData.data.src_actor), , drop = FALSE]
#Create matrix
matrix <- as.matrix(df2)
#Create graph object
g <- graph_from_data_frame(matrix)
#Color edges
E(g)$color <- as.factor(E(g)$EventData.data.root_code)
#Color edges cyan for all cooperative root codes
E(g)[EventData.data.root_code %in% c("03", "04", "05", "06", "07", "08")]$color = "cyan"
#Color edges magenta for all conflict root codes
E(g)[EventData.data.root_code %in% c("09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20")]$color = "magenta"
#Color vertices
V(g)["USA"]$color <- "lightblue"
V(g)["DEU"]$color <- "lightblue"
V(g)["GBR"]$color <- "lightblue"
V(g)["TUR"]$color <- "lightblue"
V(g)["RUS"]$color <- "red"
V(g)["UKR"]$color <- "yellow"
#Generate/save plot
png("March_2022.png", width = 890, height = 750)
plot (g,
main = "Cooperation and Conflict by src_actor and tgt_actor: March 2022",
edge.arrow.size = 1,
edge.arrow.width = .6,
vertex.label.cex = 0.8,
layout=layout_in_circle)
legend("bottomleft", cex = 1.2, legend=c("Ukraine", "Russia", "NATO", "Cooperation", "Conflict"),fill=c("yellow","red","lightblue", "cyan", "magenta"))
dev.off()
```
## Create Plot for April 2022
```{r}
#Load JSON file and create dataframe
EventData <- fromJSON("EventData.json") %>% as.data.frame
#Create dataframe using "src_actor," "tgt_actor," "root_code," and "month" columns
df1 <- data.frame(EventData$data.src_actor, EventData$data.tgt_actor, EventData$data.root_code, EventData$data.month) |>
#Filter by desired month (January = '01'; February = '02'; March = '03'; April = '04')
filter(EventData.data.month %in% c('04')) |>
#Filter by cooperative and conflict root codes ("03" through "20")
filter(EventData.data.root_code %in% c('03', '04', '05', '06', '07', '08','09', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20')) |>
#Extract USA, DEU, GBR, RUS, UKR, CHN, IND, and TUR as actor-pairs from "src_actor" and "tgt_actor" columns
filter(EventData.data.src_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR')) |>
filter(EventData.data.tgt_actor %in% c('USA', 'DEU', 'GBR', 'RUS', 'UKR', 'CHN', 'IND', 'TUR'))
#Create dataframe sorted alphabetically over source actor (to take control back from igraph's node positioning)
df2 <- df1[order(df1$EventData.data.src_actor), , drop = FALSE]
#Create matrix
matrix <- as.matrix(df2)
#Create graph object
g <- graph_from_data_frame(matrix)
#Color edges
E(g)$color <- as.factor(E(g)$EventData.data.root_code)
#Color edges cyan for all cooperative root codes
E(g)[EventData.data.root_code %in% c("03", "04", "05", "06", "07", "08")]$color = "cyan"
#Color edges magenta for all conflict root codes
E(g)[EventData.data.root_code %in% c("09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20")]$color = "magenta"
#Color vertices
V(g)["USA"]$color <- "lightblue"
V(g)["DEU"]$color <- "lightblue"
V(g)["GBR"]$color <- "lightblue"
V(g)["TUR"]$color <- "lightblue"
V(g)["RUS"]$color <- "red"
V(g)["UKR"]$color <- "yellow"
#Generate/save plot
png("April_2022.png", width = 890, height = 750)
plot (g,
main = "Cooperation and Conflict by src_actor and tgt_actor: April 2022",
edge.arrow.size = 1,
edge.arrow.width = .6,
vertex.label.cex = 0.8,
layout=layout_in_circle)
legend("bottomleft", cex = 1.2, legend=c("Ukraine", "Russia", "NATO", "Cooperation", "Conflict"),fill=c("yellow","red","lightblue", "cyan", "magenta"))
dev.off()
```
## Animate igraphs Using Saved Images
```{r}
#Read file names
images <- lapply(c("January_2022.png",
"February_2022.png",
"March_2022.png",
"April_2022.png")
, image_read)
#Join images
images_joined <- image_join(images)
#Animate at one frame per second
images_gif <- image_animate(images_joined, fps = 1)
#View animated GIF
images_gif
#Save GIF
image_write(image = images_gif, path = "igraphs_animated.gif")
```