diff --git a/exercises/practice/anagram/.docs/instructions.md b/exercises/practice/anagram/.docs/instructions.md index a7298485..dca24f52 100644 --- a/exercises/practice/anagram/.docs/instructions.md +++ b/exercises/practice/anagram/.docs/instructions.md @@ -1,13 +1,12 @@ # Instructions -Your task is to, given a target word and a set of candidate words, to find the subset of the candidates that are anagrams of the target. +Given a target word and one or more candidate words, your task is to find the candidates that are anagrams of the target. An anagram is a rearrangement of letters to form a new word: for example `"owns"` is an anagram of `"snow"`. A word is _not_ its own anagram: for example, `"stop"` is not an anagram of `"stop"`. -The target and candidates are words of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`). -Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `StoP` is not an anagram of `sTOp`. -The anagram set is the subset of the candidate set that are anagrams of the target (in any order). -Words in the anagram set should have the same letter case as in the candidate set. +The target word and candidate words are made up of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`). +Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `"StoP"` is not an anagram of `"sTOp"`. +The words you need to find should be taken from the candidate words, using the same letter case. -Given the target `"stone"` and candidates `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, `"Seton"`, the anagram set is `"tones"`, `"notes"`, `"Seton"`. +Given the target `"stone"` and the candidate words `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, and `"Seton"`, the anagram words you need to find are `"tones"`, `"notes"`, and `"Seton"`. diff --git a/exercises/practice/grains/.meta/config.json b/exercises/practice/grains/.meta/config.json index e5a99ab9..1c93a30d 100644 --- a/exercises/practice/grains/.meta/config.json +++ b/exercises/practice/grains/.meta/config.json @@ -15,5 +15,5 @@ }, "blurb": "Calculate the number of grains of wheat on a chessboard given that the number on each square doubles.", "source": "The CodeRanch Cattle Drive, Assignment 6", - "source_url": "https://coderanch.com/wiki/718824/Grains" + "source_url": "https://web.archive.org/web/20240908084142/https://coderanch.com/wiki/718824/Grains" } diff --git a/exercises/practice/leap/.meta/config.json b/exercises/practice/leap/.meta/config.json index df80a534..710158be 100644 --- a/exercises/practice/leap/.meta/config.json +++ b/exercises/practice/leap/.meta/config.json @@ -15,5 +15,5 @@ }, "blurb": "Determine whether a given year is a leap year.", "source": "CodeRanch Cattle Drive, Assignment 3", - "source_url": "https://coderanch.com/t/718816/Leap" + "source_url": "https://web.archive.org/web/20240907033714/https://coderanch.com/t/718816/Leap" } diff --git a/exercises/practice/luhn/.docs/instructions.md b/exercises/practice/luhn/.docs/instructions.md index 49934c10..5bbf007b 100644 --- a/exercises/practice/luhn/.docs/instructions.md +++ b/exercises/practice/luhn/.docs/instructions.md @@ -1,12 +1,10 @@ # Instructions -Given a number determine whether or not it is valid per the Luhn formula. +Determine whether a credit card number is valid according to the [Luhn formula][luhn]. -The [Luhn algorithm][luhn] is a simple checksum formula used to validate a variety of identification numbers, such as credit card numbers and Canadian Social Insurance Numbers. +The number will be provided as a string. -The task is to check if a given string is valid. - -## Validating a Number +## Validating a number Strings of length 1 or less are not valid. Spaces are allowed in the input, but they should be stripped before checking. diff --git a/exercises/practice/luhn/.docs/introduction.md b/exercises/practice/luhn/.docs/introduction.md new file mode 100644 index 00000000..ec2bd709 --- /dev/null +++ b/exercises/practice/luhn/.docs/introduction.md @@ -0,0 +1,11 @@ +# Introduction + +At the Global Verification Authority, you've just been entrusted with a critical assignment. +Across the city, from online purchases to secure logins, countless operations rely on the accuracy of numerical identifiers like credit card numbers, bank account numbers, transaction codes, and tracking IDs. +The Luhn algorithm is a simple checksum formula used to ensure these numbers are valid and error-free. + +A batch of identifiers has just arrived on your desk. +All of them must pass the Luhn test to ensure they're legitimate. +If any fail, they'll be flagged as invalid, preventing errors or fraud, such as incorrect transactions or unauthorized access. + +Can you ensure this is done right? The integrity of many services depends on you. diff --git a/exercises/practice/pascals-triangle/.docs/introduction.md b/exercises/practice/pascals-triangle/.docs/introduction.md index 60b8ec30..eab454e5 100644 --- a/exercises/practice/pascals-triangle/.docs/introduction.md +++ b/exercises/practice/pascals-triangle/.docs/introduction.md @@ -13,7 +13,7 @@ Over the next hour, your teacher reveals some amazing things hidden in this tria - It contains the Fibonacci sequence. - If you color odd and even numbers differently, you get a beautiful pattern called the [SierpiƄski triangle][wikipedia-sierpinski-triangle]. -The teacher implores you and your classmates to lookup other uses, and assures you that there are lots more! +The teacher implores you and your classmates to look up other uses, and assures you that there are lots more! At that moment, the school bell rings. You realize that for the past hour, you were completely absorbed in learning about Pascal's triangle. You quickly grab your laptop from your bag and go outside, ready to enjoy both the sunshine _and_ the wonders of Pascal's triangle. diff --git a/exercises/practice/rna-transcription/.meta/config.json b/exercises/practice/rna-transcription/.meta/config.json index 2f01d03d..4a3bbfa0 100644 --- a/exercises/practice/rna-transcription/.meta/config.json +++ b/exercises/practice/rna-transcription/.meta/config.json @@ -13,7 +13,7 @@ ".meta/example.lisp" ] }, - "blurb": "Given a DNA strand, return its RNA Complement Transcription.", + "blurb": "Given a DNA strand, return its RNA complement.", "source": "Hyperphysics", "source_url": "https://web.archive.org/web/20220408112140/http://hyperphysics.phy-astr.gsu.edu/hbase/Organic/transcription.html" } diff --git a/exercises/practice/say/.meta/config.json b/exercises/practice/say/.meta/config.json index da9b2f5b..fa8de2c6 100644 --- a/exercises/practice/say/.meta/config.json +++ b/exercises/practice/say/.meta/config.json @@ -15,5 +15,5 @@ }, "blurb": "Given a number from 0 to 999,999,999,999, spell out that number in English.", "source": "A variation on the JavaRanch CattleDrive, Assignment 4", - "source_url": "https://coderanch.com/wiki/718804" + "source_url": "https://web.archive.org/web/20240907035912/https://coderanch.com/wiki/718804" }