-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmlx_bitnet.py
882 lines (734 loc) · 35.4 KB
/
mlx_bitnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LLaMA model."""
import argparse
import math
import warnings
import glob
import json
import time
import os
from time import perf_counter_ns
from pathlib import Path
from typing import List, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from configuration_bitnet import BitnetConfig
from mlx.utils import tree_map, tree_unflatten
from sentencepiece import SentencePieceProcessor
from tokenization_bitnet import BitnetTokenizer
from dataclasses import dataclass
@dataclass
class MinimalBitnetConfig:
attention_bias: bool = False
bos_token_id: int = 1
eos_token_id: int = 2
hidden_size: int = 2048
input_bits: int = 8
intermediate_size: int = 5460
max_position_embeddings: int = 2048
num_attention_heads: int = 32
num_hidden_layers: int = 24
num_key_value_heads: int = 32
pad_token_id: int = 32000
rms_norm_eps: float = 1e-05
rope_theta: float = 10000.0
use_cache: bool = True
vocab_size: int = 32002
weight_bits: int = 1
output_hidden_states: bool = False
output_attentions: bool = False
use_return_dict: bool = True
def clamp(arr, min=None, max=None):
if not min:
return mx.minimum(arr, max)
if not max:
return mx.maximum(arr, min)
return mx.minimum(mx.maximum(arr, min), max)
def weight_quant(weight, num_bits=1):
dtype = weight.dtype
weight = weight.astype(mx.float32)
s = 1 / clamp(weight.abs().mean(), min=1e-5)
result = clamp((weight * s).round(), min=-1, max=1) / s
return result.astype(dtype)
def activation_quant(x, num_bits=8):
dtype = x.dtype
x = x.astype(mx.float32)
Qn = -2 ** (num_bits - 1)
Qp = 2 ** (num_bits - 1) - 1
s = Qp / mx.maximum(x.abs().max(axis=-1, keepdims=True), 1e-5)
result = clamp((x * s).round(), min=Qn, max=Qp) / s
return result.astype(dtype)
class BitLinear(nn.Linear):
def __init__(self,
*kargs,
weight_bits=1,
input_bits=8,
**kwargs
):
super(BitLinear, self).__init__(*kargs, **kwargs)
"""
RMSNorm is placed outside BitLinear
"""
self.weight_bits = weight_bits
self.input_bits = input_bits
def forward(self, input):
quant_input = activation_quant(input, self.input_bits)
quant_weight = weight_quant(self.weight, self.weight_bits)
out = quant_input @ quant_weight.T
if hasattr(self, 'bias') and self.bias is not None:
out += mx.broadcast_to(self.bias.reshape((1, -1)), out.shape)
return out
class BitnetRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
BitnetRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = mx.ones(hidden_size)
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.astype(mx.float32)
variance = hidden_states.square().mean(axis=-1, keepdims=True)
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.astype(input_dtype)
class BitnetRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, scaling_factor=1.0):
super().__init__()
self.scaling_factor = scaling_factor
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (mx.arange(0, self.dim, 2, dtype=mx.int64).astype(mx.float32) / self.dim))
self.inv_freq = inv_freq
# For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings
t = mx.arange(self.max_seq_len_cached, dtype=mx.int64).astype(self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = mx.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = mx.concatenate([freqs, freqs], axis=-1)
self._cos_cached = emb.cos().astype(mx.float32)
self._sin_cached = emb.sin().astype(mx.float32)
@property
def sin_cached(self):
print(
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
"the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
)
return self._sin_cached
@property
def cos_cached(self):
print(
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
"the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
)
return self._cos_cached
def forward(self, x, position_ids):
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq = self.inv_freq[None, :, None].astype(mx.float32)
inv_freq_expanded = mx.broadcast_to(inv_freq, (position_ids.shape[0], inv_freq.shape[1], 1))
position_ids_expanded = position_ids[:, None, :].astype(mx.float32)
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
freqs = (inv_freq_expanded.astype(mx.float32) @ position_ids_expanded.astype(mx.float32)).transpose((0, 2, 1))
emb = mx.concatenate([freqs, freqs], axis=-1)
cos = emb.cos()
sin = emb.sin()
return cos.astype(x.dtype), sin.astype(x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return mx.concatenate([-x2, x1], axis=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`mx.array`): The query tensor.
k (`mx.array`): The key tensor.
cos (`mx.array`): The cosine part of the rotary embedding.
sin (`mx.array`): The sine part of the rotary embedding.
position_ids (`mx.array`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(mx.array)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = mx.expand_dims(cos, axis=unsqueeze_dim)
sin = mx.expand_dims(sin, axis=unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class BitnetMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = BitLinear(
self.hidden_size, self.intermediate_size, bias=False,
weight_bits=config.weight_bits, input_bits=config.input_bits,
)
self.up_proj = BitLinear(
self.hidden_size, self.intermediate_size, bias=False,
weight_bits=config.weight_bits, input_bits=config.input_bits,
)
self.down_proj = BitLinear(
self.intermediate_size, self.hidden_size, bias=False,
weight_bits=config.weight_bits, input_bits=config.input_bits,
)
self.act_fn = nn.silu
self.ffn_layernorm = BitnetRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)
def forward(self, x):
x = self.act_fn(self.gate_proj.forward(x)) * self.up_proj.forward(x)
x = self.ffn_layernorm.forward(x)
x = self.down_proj.forward(x)
return x
def repeat_kv(hidden_states: mx.array, n_rep: int) -> mx.array:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = mx.expand_dims(hidden_states, axis=2)
hidden_states = mx.broadcast_to(hidden_states, shape=(batch, num_key_value_heads, n_rep, slen, head_dim))
hidden_states = hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
return hidden_states
class BitnetAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: MinimalBitnetConfig, layer_idx: Optional[int] = None):
super().__init__()
self.layer_idx = layer_idx
if layer_idx is None:
print(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = BitLinear(
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias,
weight_bits=config.weight_bits, input_bits=config.input_bits,
)
self.k_proj = BitLinear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
weight_bits=config.weight_bits, input_bits=config.input_bits,
)
self.v_proj = BitLinear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
weight_bits=config.weight_bits, input_bits=config.input_bits,
)
self.o_proj = BitLinear(
self.hidden_size, self.hidden_size, bias=config.attention_bias,
weight_bits=config.weight_bits, input_bits=config.input_bits,
)
self._init_rope()
self.inner_attn_ln = BitnetRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
def _init_rope(self):
self.rotary_emb = BitnetRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def forward(
self,
hidden_states: mx.array,
attention_mask: Optional[mx.array] = None,
position_ids: Optional[mx.array] = None,
past_key_value: Optional[Tuple[mx.array, mx.array]] = None,
output_attentions: bool = False,
cache_position: Optional[mx.array] = None,
**kwargs,
) -> Tuple[mx.array, Optional[mx.array], Optional[Tuple[mx.array]]]:
bsz, q_len, _ = hidden_states.shape
query_states = self.q_proj.forward(hidden_states)
key_states = self.k_proj.forward(hidden_states)
value_states = self.v_proj.forward(hidden_states)
query_states = query_states.reshape(bsz, q_len, self.num_heads, self.head_dim).swapaxes(1, 2)
key_states = key_states.reshape(bsz, q_len, self.num_key_value_heads, self.head_dim).swapaxes(1, 2)
value_states = value_states.reshape(bsz, q_len, self.num_key_value_heads, self.head_dim).swapaxes(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
cos, sin = self.rotary_emb.forward(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_cache, value_cache = past_key_value
key_states = mx.concatenate((key_cache, key_states), axis=2)
value_states = mx.concatenate((value_cache, value_states), axis=2)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = mx.matmul(query_states, key_states.swapaxes(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.softmax(attn_weights, axis=-1).astype(query_states.dtype)
attn_output = mx.matmul(attn_weights, value_states)
if attn_output.shape != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of shape {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.shape}"
)
# attn_output = attn_output.swapaxes(1, 2).contiguous()
attn_output = attn_output.swapaxes(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.inner_attn_ln.forward(attn_output)
attn_output = self.o_proj.forward(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class BitnetDecoderLayer(nn.Module):
def __init__(self, config: MinimalBitnetConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = BitnetAttention(config=config, layer_idx=layer_idx)
self.mlp = BitnetMLP(config)
self.input_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: mx.array,
attention_mask: Optional[mx.array] = None,
position_ids: Optional[mx.array] = None,
past_key_value: Optional[Tuple[mx.array]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[mx.array] = None,
**kwargs,
) -> Tuple[mx.array, Optional[Tuple[mx.array, mx.array]]]:
"""
Args:
hidden_states (`mx.array`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`mx.array`, *optional*):
attention mask of size `(batch_size, 1, query_sequence_length, key_sequence_length)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(mx.array)`, *optional*): cached past key and value projection states
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm.forward(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn.forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm.forward(hidden_states)
hidden_states = self.mlp.forward(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class BitnetModel(nn.Module):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BitnetDecoderLayer`]
Args:
config: BitnetConfig
"""
def __init__(self, config: BitnetConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = [
BitnetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)
]
self.norm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: mx.array = None,
attention_mask: Optional[mx.array] = None,
position_ids: Optional[mx.array] = None,
past_key_values: Optional[List[mx.array]] = None,
inputs_embeds: Optional[mx.array] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[mx.array] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
if cache_position is None:
cache_position = mx.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]
)
if position_ids is None:
position_ids = mx.expand_dims(cache_position, axis=0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer.forward(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm.forward(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache
)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
dtype = input_tensor.dtype
# min_dtype = mx.finfo(dtype).min
# TODO: not sure how to get min of a dtype in mlx
min_dtype = 0
sequence_length = input_tensor.shape[1]
if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache
target_length = self.config.max_position_embeddings
else: # dynamic cache
target_length = (
attention_mask.shape[-1] if isinstance(attention_mask, mx.array) else cache_position[-1] + 1
)
causal_mask = mx.full((sequence_length, target_length), min_dtype, dtype=dtype)
if sequence_length != 1:
causal_mask = mx.triu(causal_mask, 1)
causal_mask *= mx.arange(target_length) > cache_position.reshape(-1, 1)
causal_mask = mx.broadcast_to(causal_mask[None, None, :, :], (input_tensor.shape[0], 1) + causal_mask.shape[-2:])
if attention_mask is not None:
# causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.ndim == 2:
mask_length = attention_mask.shape[-1]
padding_mask = mx.equal(causal_mask[..., :mask_length], 0.0) * mx.equal(attention_mask[:, None, None, :], 0.0)
causal_mask[..., :mask_length] = mx.where(padding_mask, mx.array(min_dtype, dtype=causal_mask.dtype), causal_mask[..., :mask_length])
elif attention_mask.ndim == 4:
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
# cache. In that case, the 4D attention mask attends to the newest tokens only.
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
offset = cache_position[0]
else:
offset = 0
mask_shape = attention_mask.shape
mask_slice = mx.equal(attention_mask, 0.0).astype(dtype) * min_dtype
causal_mask[
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
] = mask_slice
return causal_mask
class BitnetForCausalLM(nn.Module):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__()
self.config = config
self.model = BitnetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
# self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: mx.array = None,
attention_mask: Optional[mx.array] = None,
position_ids: Optional[mx.array] = None,
past_key_values: Optional[List[mx.array]] = None,
inputs_embeds: Optional[mx.array] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[mx.array] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
Returns:
Example:
```python
>>> from transformers import LlamaTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Bitnet-2-7b-hf")
>>> tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Bitnet-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.astype(mx.float32)
if not return_dict:
output = (logits,) + outputs[1:]
return output
return CausalLMOutputWithPast(
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def generate(self, input_ids, attention_mask, temp=1.0):
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
batch_size, cur_len = input_ids.shape
cache_position = mx.arange(cur_len)
max_tokens = 50
for _ in range(max_tokens):
model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=True, attention_mask=attention_mask, cache_position=cache_position)
lm_output = self.forward(
**model_inputs,
return_dict=True,
output_attentions=True,
output_hidden_states=True,
)
next_token_logits = lm_output.logits[:, -1, :]
next_tokens = sample(next_token_logits)
yield next_tokens
# next token
## update attention mask
attention_mask = mx.concatenate(
[attention_mask, mx.ones((attention_mask.shape[0], 1), dtype=attention_mask.dtype)],
axis=-1
)
input_ids = mx.concatenate([input_ids, next_tokens[:, None]], axis=-1)
if cache_position is not None:
cache_position = cache_position[-1:] + 1
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
):
# With static cache, the `past_key_values` is None
# TODO joao: standardize interface for the different Cache classes and remove of this if
has_static_cache = False
if past_key_values is None:
past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)
has_static_cache = past_key_values is not None
past_length = 0
if past_key_values is not None:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.astype(mx.int64).cumsum(-1) - 1
position_ids = mx.where(attention_mask == 0, mx.ones_like(position_ids), position_ids)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
if cache_position is None:
cache_position = mx.arange(past_length, past_length + input_length)
else:
cache_position = cache_position[-input_length:]
if has_static_cache:
past_key_values = None
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),
)
return reordered_past
def sanitize_config(_config: BitnetConfig) -> MinimalBitnetConfig:
return MinimalBitnetConfig(
attention_bias=_config.attention_bias,
hidden_size=_config.hidden_size,
input_bits=_config.input_bits,
intermediate_size=_config.intermediate_size,
max_position_embeddings=_config.max_position_embeddings,
num_attention_heads=_config.num_attention_heads,
num_key_value_heads=_config.num_key_value_heads,
pad_token_id=_config.pad_token_id,
rms_norm_eps=_config.rms_norm_eps,
rope_theta=_config.rope_theta,
weight_bits=_config.weight_bits,
use_cache=_config.use_cache,
output_hidden_states=_config.output_hidden_states,
output_attentions=_config.output_attentions,
use_return_dict=_config.use_return_dict,
)
def load_model(model_name: str, dtype: str = "float16"):
config = BitnetConfig.from_pretrained(model_name)
dtype = getattr(mx, dtype)
model = BitnetModel(sanitize_config(config))
file_name = model_name.replace("/", "-")
weights = mx.load(f"{file_name}.npz")
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: p.astype(dtype), weights)
model.update(weights)
mx.eval(model.parameters())
return model, BitnetTokenizer.from_pretrained(model_name)
def load_causal_model(model_name: str, dtype: str = "float16"):
config = BitnetConfig.from_pretrained(model_name)
dtype = getattr(mx, dtype)
model = BitnetForCausalLM(sanitize_config(config))
file_name = model_name.replace("/", "-")
weights = mx.load(f"{file_name}.npz")
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: p.astype(dtype), weights)
model.update(weights)
mx.eval(model.parameters())
return model, BitnetTokenizer.from_pretrained(model_name)