-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathsetup.py
executable file
·181 lines (157 loc) · 6.22 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import glob
import os
import runpy
import sys
import warnings
from typing import List, Optional
import torch
from setuptools import find_packages, setup
from torch.utils.cpp_extension import CppExtension, CUDA_HOME, CUDAExtension
def get_existing_ccbin(nvcc_args: List[str]) -> Optional[str]:
"""
Given a list of nvcc arguments, return the compiler if specified.
Note from CUDA doc: Single value options and list options must have
arguments, which must follow the name of the option itself by either
one of more spaces or an equals character.
"""
last_arg = None
for arg in reversed(nvcc_args):
if arg == "-ccbin":
return last_arg
if arg.startswith("-ccbin="):
return arg[7:]
last_arg = arg
return None
def get_extensions():
no_extension = os.getenv("PYTORCH3D_NO_EXTENSION", "0") == "1"
if no_extension:
msg = "SKIPPING EXTENSION BUILD. PYTORCH3D WILL NOT WORK!"
print(msg, file=sys.stderr)
warnings.warn(msg)
return []
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, "pytorch3d", "csrc")
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"), recursive=True)
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu"), recursive=True)
extension = CppExtension
extra_compile_args = {"cxx": ["-std=c++17"]}
define_macros = []
include_dirs = [extensions_dir]
force_cuda = os.getenv("FORCE_CUDA", "0") == "1"
force_no_cuda = os.getenv("PYTORCH3D_FORCE_NO_CUDA", "0") == "1"
if (
not force_no_cuda and torch.cuda.is_available() and CUDA_HOME is not None
) or force_cuda:
extension = CUDAExtension
sources += source_cuda
define_macros += [("WITH_CUDA", None)]
# Thrust is only used for its tuple objects.
# With CUDA 11.0 we can't use the cudatoolkit's version of cub.
# We take the risk that CUB and Thrust are incompatible, because
# we aren't using parts of Thrust which actually use CUB.
define_macros += [("THRUST_IGNORE_CUB_VERSION_CHECK", None)]
cub_home = os.environ.get("CUB_HOME", None)
nvcc_args = [
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
if os.name != "nt":
nvcc_args.append("-std=c++17")
if cub_home is None:
prefix = os.environ.get("CONDA_PREFIX", None)
if prefix is not None and os.path.isdir(prefix + "/include/cub"):
cub_home = prefix + "/include"
if cub_home is None:
warnings.warn(
"The environment variable `CUB_HOME` was not found. "
"NVIDIA CUB is required for compilation and can be downloaded "
"from `https://github.com/NVIDIA/cub/releases`. You can unpack "
"it to a location of your choice and set the environment variable "
"`CUB_HOME` to the folder containing the `CMakeListst.txt` file."
)
else:
include_dirs.append(os.path.realpath(cub_home).replace("\\ ", " "))
nvcc_flags_env = os.getenv("NVCC_FLAGS", "")
if nvcc_flags_env != "":
nvcc_args.extend(nvcc_flags_env.split(" "))
# This is needed for pytorch 1.6 and earlier. See e.g.
# https://github.com/facebookresearch/pytorch3d/issues/436
# It is harmless after https://github.com/pytorch/pytorch/pull/47404 .
# But it can be problematic in torch 1.7.0 and 1.7.1
if torch.__version__[:4] != "1.7.":
CC = os.environ.get("CC", None)
if CC is not None:
existing_CC = get_existing_ccbin(nvcc_args)
if existing_CC is None:
CC_arg = "-ccbin={}".format(CC)
nvcc_args.append(CC_arg)
elif existing_CC != CC:
msg = f"Inconsistent ccbins: {CC} and {existing_CC}"
raise ValueError(msg)
extra_compile_args["nvcc"] = nvcc_args
sources = [os.path.join(extensions_dir, s) for s in sources]
ext_modules = [
extension(
"pytorch3d._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
# Retrieve __version__ from the package.
__version__ = runpy.run_path("pytorch3d/__init__.py")["__version__"]
if os.getenv("PYTORCH3D_NO_NINJA", "0") == "1":
class BuildExtension(torch.utils.cpp_extension.BuildExtension):
def __init__(self, *args, **kwargs):
super().__init__(use_ninja=False, *args, **kwargs)
else:
BuildExtension = torch.utils.cpp_extension.BuildExtension
trainer = "pytorch3d.implicitron_trainer"
setup(
name="pytorch3d",
version=__version__,
author="FAIR",
url="https://github.com/facebookresearch/pytorch3d",
description="PyTorch3D is FAIR's library of reusable components "
"for deep Learning with 3D data.",
packages=find_packages(
exclude=("configs", "tests", "tests.*", "docs.*", "projects.*")
)
+ [trainer],
package_dir={trainer: "projects/implicitron_trainer"},
install_requires=["iopath"],
extras_require={
"all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"],
"dev": ["flake8", "usort"],
"implicitron": [
"hydra-core>=1.1",
"visdom",
"lpips",
"tqdm>4.29.0",
"matplotlib",
"accelerate",
"sqlalchemy>=2.0",
],
},
entry_points={
"console_scripts": [
f"pytorch3d_implicitron_runner={trainer}.experiment:experiment",
f"pytorch3d_implicitron_visualizer={trainer}.visualize_reconstruction:main",
]
},
ext_modules=get_extensions(),
cmdclass={"build_ext": BuildExtension},
package_data={
"": ["*.json"],
},
)