-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMNIST_FASION_ANN.py
45 lines (32 loc) · 1.24 KB
/
MNIST_FASION_ANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)
data = keras.datasets.fashion_mnist
(train_images,train_labels),(test_images,test_labels) = data.load_data()
train_images= train_images/255.0
test_images= test_images/255.0
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#creating the neural network:-
model= keras.Sequential(
[
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10,activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',metrics =['accuracy'])
# epochs influences the order of clothes the program sees
#it randomly pics an image and feeds
model.fit(train_images, train_labels, epochs=2);
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test Acc:', test_acc)
prediction = model.predict(test_images)
for i in range (5):
plt.grid(False)
plt.imshow(test_images[i],cmap=plt.cm.binary)
plt.xlabel('Actual : ' + class_names[test_labels[i]])
plt.title('Prediction '+ class_names[np.argmax(prediction[i])])
plt.show()