-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweather_data_python
39 lines (29 loc) · 923 Bytes
/
weather_data_python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
### Load the Data
weather_data = pd.DataFrame(pd.read_csv('WeatherUS_2016 (1).csv'))
weather_data.head()
weather_data.shape
weather_data.info()
weather_data.describe
#Find the duplicates
weather_data.duplicated().sum()
#unique values
weather_data['Type'].unique()
#unique values
weather_data['Severity'].unique()
#unique values
weather_data['State'].unique()
### Visualize the Unique counts
sns.countplot(weather_data['Type']).unique()
### Find the Null values
weather_data.isnull().sum()
### Correlation Plot - EDA
weather_data.corr()
### Removing unnecessary columns
Reduced_df = weather_data.drop(['Unnamed: 0', 'EventId','TimeZone','LocationLat','LocationLng','County','ZipCode'], axis=1)
Reduced_df.head()
### Rename the coolumns
Reduced_df.rename(
columns={"StartTime(UTC)": "StartTime_UTC", "EndTime(UTC)": "EndTime_UTC", "Precipitation(in)": "Precipitation_in"},
inplace=True,
)
Reduced_df.head()