diff --git a/clampe1.ipynb b/clampe1.ipynb new file mode 100644 index 0000000..198cfcd --- /dev/null +++ b/clampe1.ipynb @@ -0,0 +1,295 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IPython version: %6.6s 7.17.0\n" + ] + } + ], + "source": [ + "import IPython\n", + "import json\n", + "# Numpy is a library for working with Arrays\n", + "import numpy as np\n", + "# SciPy implements many different numerical algorithms\n", + "import scipy as sp\n", + "# Pandas is good with data tables\n", + "import pandas as pd\n", + "# Module for plotting\n", + "import matplotlib\n", + "#BeautifulSoup parses HTML documents (once you get them via requests)\n", + "import bs4\n", + "# Nltk helps with some natural language tasks, like stemming\n", + "import nltk\n", + "# Bson is a binary format of json to be stored in databases\n", + "import bson\n", + "# Mongo is one of common nosql databases \n", + "# it stores/searches json documents natively\n", + "import pymongo\n", + "print (\"IPython version: %6.6s\", IPython.__version__)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Make a 2 row x 3 column array of random numbers\n", + "[[0.56424049 0.32501362 0.33332727]\n", + " [0.06728136 0.31634034 0.96429088]]\n", + "Add 5 to every element\n", + "[[5.56424049 5.32501362 5.33332727]\n", + " [5.06728136 5.31634034 5.96429088]]\n", + "Get the first row\n", + "[5.56424049 5.32501362 5.33332727]\n" + ] + } + ], + "source": [ + "#Here is what numpy can do\\n\",\n", + "print (\"Make a 2 row x 3 column array of random numbers\")\n", + "x = np.random.random((2, 3))\n", + "print (x)\n", + "\n", + "#array operation (as in R)\n", + "print (\"Add 5 to every element\")\n", + "x = x + 5\n", + "print (x)\n", + "\n", + "# get a slice (first row) (as in R)\n", + "print (\"Get the first row\")\n", + "print (x[0, :])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# IPython is quite modern: just press at the end of the unfinished statement to see the documentation\n", + "# on possible completions.\n", + "# In the code cell below, type x., to find built-in operations for x\n", + "x.any" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD4CAYAAAAEhuazAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPzElEQVR4nO3dfYxldX3H8fenrGDVKuBOKS6kQ3S1RdMqnVIaa2OlqQjGpa0lENOuSrLR+Ii2ukgipo3JUm19SHzIVqhrSxCKGGipFUpB06SsHRCRB5EtLrLbBcbUp9YEu/LtH/eQva6zs8w9d/be6e/9SjZzzu/+zpzPTs585uw5c8+mqpAkteWnJh1AknToWf6S1CDLX5IaZPlLUoMsf0lq0JpJBwBYu3Ztzc7OTjqGJK0qt9xyy7eqamaUbaei/GdnZ5mfn590DElaVZLcP+q2XvaRpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBBy3/JJckeTjJHUNj70vytSS3J/lskiOHXjs/yY4k9yR56QrlliT18HjO/D8JnLbf2PXA86rql4CvA+cDJDkROBt4brfNR5McNra0kqSxOOg7fKvqi0lm9xu7bmj1ZuCV3fIG4NNV9QjwjSQ7gJOBfxtPXKkds5uvnch+d245YyL71aE1jmv+rwU+1y2vAx4Yem1XN/YTkmxKMp9kfmFhYQwxJEmPV6/yT3IBsBe4dLnbVtXWqpqrqrmZmZGeSyRJGtHID3ZL8mrg5cCpte8/At4NHD807bhuTJI0RUY6809yGvAO4BVV9YOhl64Bzk5yRJITgPXAl/rHlCSN00HP/JNcBrwYWJtkF3Ahg9/uOQK4PgnAzVX1uqq6M8kVwF0MLge9oap+tFLhJUmjeTy/7XPOIsMXLzH/vcB7+4SSJK0s3+ErSQ2y/CWpQZa/JDXI8pekBln+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5IaZPlLUoMsf0lqkOUvSQ06aPknuSTJw0nuGBo7Osn1Se7tPh7VjSfJh5PsSHJ7kpNWMrwkaTSP58z/k8Bp+41tBm6oqvXADd06wMuA9d2fTcDHxhNTkjROBy3/qvoi8F/7DW8AtnXL24Azh8Y/VQM3A0cmOXZMWSVJYzLqNf9jqmpPt/wgcEy3vA54YGjerm5MkjRFet/wraoCarnbJdmUZD7J/MLCQt8YkqRlGLX8H3rsck738eFufDdw/NC847qxn1BVW6tqrqrmZmZmRowhSRrFqOV/DbCxW94IXD00/kfdb/2cAnx36PKQJGlKrDnYhCSXAS8G1ibZBVwIbAGuSHIucD9wVjf9H4HTgR3AD4DXrEBmSVJPBy3/qjrnAC+dusjcAt7QN5QkaWUdtPylaTC7+dqJ7XvnljMmtm9ppfh4B0lqkOUvSQ2y/CWpQZa/JDXI8pekBln+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yAe7SQcxyYfKSSvFM39JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNahX+Sc5L8mdSe5IclmSJyY5Icn2JDuSXJ7k8HGFlSSNx8jln2Qd8GZgrqqeBxwGnA1cBHygqp4FfBs4dxxBJUnj0/eyzxrgp5OsAZ4E7AFeAlzZvb4NOLPnPiRJYzZy+VfVbuD9wDcZlP53gVuA71TV3m7aLmDdYtsn2ZRkPsn8wsLCqDEkSSPoc9nnKGADcALwDODJwGmPd/uq2lpVc1U1NzMzM2oMSdII+lz2+W3gG1W1UFX/C1wFvBA4srsMBHAcsLtnRknSmPUp/28CpyR5UpIApwJ3ATcCr+zmbASu7hdRkjRufa75b2dwY/dW4Kvd59oKvBN4W5IdwNOBi8eQU5I0Rr3+A/equhC4cL/h+4CT+3xeSdLK8h2+ktQgy1+SGmT5S1KDLH9JalCvG76S/v+Z3XztxPa9c8sZE9t3azzzl6QGWf6S1CDLX5IaZPlLUoMsf0lqkOUvSQ2y/CWpQZa/JDXI8pekBln+ktQgy1+SGmT5S1KDLH9JapDlL0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSg3qVf5Ijk1yZ5GtJ7k7y60mOTnJ9knu7j0eNK6wkaTz6nvl/CPinqvoF4JeBu4HNwA1VtR64oVuXJE2Rkcs/ydOA3wQuBqiqH1bVd4ANwLZu2jbgzH4RJUnj1ufM/wRgAfjrJF9O8okkTwaOqao93ZwHgWMW2zjJpiTzSeYXFhZ6xJAkLVef8l8DnAR8rKpeAPwP+13iqaoCarGNq2prVc1V1dzMzEyPGJKk5epT/ruAXVW1vVu/ksEPg4eSHAvQfXy4X0RJ0riNXP5V9SDwQJLndEOnAncB1wAbu7GNwNW9EkqSxm5Nz+3fBFya5HDgPuA1DH6gXJHkXOB+4Kye+5AkjVmv8q+q24C5RV46tc/nlSStLN/hK0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5IaZPlLUoP6/mcuaszs5msnHUHSGFj+kqbGpE4udm45YyL7nSQv+0hSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5Ia1Lv8kxyW5MtJ/qFbPyHJ9iQ7klye5PD+MSVJ4zSOM/+3AHcPrV8EfKCqngV8Gzh3DPuQJI1Rr/JPchxwBvCJbj3AS4AruynbgDP77EOSNH59z/w/CLwDeLRbfzrwnara263vAtYttmGSTUnmk8wvLCz0jCFJWo6Ryz/Jy4GHq+qWUbavqq1VNVdVczMzM6PGkCSNoM9TPV8IvCLJ6cATgacCHwKOTLKmO/s/DtjdP6YkaZxGPvOvqvOr6riqmgXOBv6lql4F3Ai8spu2Ebi6d0pJ0litxO/5vxN4W5IdDO4BXLwC+5Ak9TCW/8ylqm4CbuqW7wNOHsfnlSStDN/hK0kNsvwlqUGWvyQ1yPKXpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5IaZPlLUoMsf0lqkOUvSQ2y/CWpQZa/JDXI8pekBln+ktQgy1+SGmT5S1KDLH9JapDlL0kNGrn8kxyf5MYkdyW5M8lbuvGjk1yf5N7u41HjiytJGoc+Z/57gbdX1YnAKcAbkpwIbAZuqKr1wA3duiRpioxc/lW1p6pu7Za/D9wNrAM2ANu6aduAM3tmlCSN2Viu+SeZBV4AbAeOqao93UsPAseMYx+SpPHpXf5JngJ8BnhrVX1v+LWqKqAOsN2mJPNJ5hcWFvrGkCQtQ6/yT/IEBsV/aVVd1Q0/lOTY7vVjgYcX27aqtlbVXFXNzczM9IkhSVqmPr/tE+Bi4O6q+suhl64BNnbLG4GrR48nSVoJa3ps+0LgD4GvJrmtG3sXsAW4Ism5wP3AWb0SSpLGbuTyr6p/BXKAl08d9fNKklae7/CVpAZZ/pLUIMtfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1KA+z/bRhMxuvnbSESStcp75S1KDLH9JapDlL0kNsvwlqUHe8JXUvEn+EsXOLWdMZL+e+UtSgyx/SWqQ5S9JDbL8JalBlr8kNcjyl6QGWf6S1CDLX5Ia5Ju8evDpmpJWq1Vf/hawJC3fil32SXJaknuS7EiyeaX2I0lavhUp/ySHAR8BXgacCJyT5MSV2JckaflW6sz/ZGBHVd1XVT8EPg1sWKF9SZKWaaWu+a8DHhha3wX82vCEJJuATd3qfye5Z5HPsxb41ookXHlmn4zVmn215gaz95KLRt50LfDzo248sRu+VbUV2LrUnCTzVTV3iCKNldknY7VmX625weyT0mWfHXX7lbrssxs4fmj9uG5MkjQFVqr8/x1Yn+SEJIcDZwPXrNC+JEnLtCKXfapqb5I3Ap8HDgMuqao7R/hUS14WmnJmn4zVmn215gazT0qv7KmqcQWRJK0SPttHkhpk+UtSgyZW/kmOT3JjkruS3JnkLd34H3TrjyaZ22+b87vHRdyT5KWTSb5k9vcl+VqS25N8NsmRqyj7n3W5b0tyXZJndONJ8uEu++1JTpq27EOvvz1JJVnbrU999iTvSbK7+7rfluT0oW0mfsws9TVP8qbueL8zyZ9PU+4ux4G+5pcPfb13JrltFWV/fpKbu+zzSU7uxpd/rFfVRP4AxwIndcs/A3ydwaMgfhF4DnATMDc0/0TgK8ARwAnAfwCHTVn23wHWdOMXARetouxPHZrzZuDj3fLpwOeAAKcA26ftmOnWj2fwCwb3A2tXS3bgPcAfLzJ/Ko6ZJXL/FvDPwBHdaz87TbkPdrwMzfkL4N2rJTtwHfCybvx04Kah5WUd6xM786+qPVV1a7f8feBuYF1V3V1Vi73bdwPw6ap6pKq+Aexg8BiJQ26J7NdV1d5u2s0M3t8AqyP794amPRl47DcBNgCfqoGbgSOTHHtIQ3cOlL17+QPAO9iXG1ZP9sVMxTGzRO7XA1uq6pHutYenKXeXacmveZIAZwGXdUOrIXsBT+2mPQ34z2552cf6VFzzTzILvADYvsS0xR4ZsdQ3zyGxRPbXMvhJDKske5L3JnkAeBXw7m7a1GdPsgHYXVVf2W/a1Gfvht7Y/VP9kiRHdWNTl32/3M8GXpRke5IvJPnVbtrU5YYDfp++CHioqu7t1ldD9rcC7+u+T98PnN9NW3b2iZd/kqcAnwHeut/Z59Q7UPYkFwB7gUsnle1gFsteVRdU1fEMcr9xkvmWMpydwdf5Xez7YTXVFvm6fwx4JvB8YA+DyxBTZ5Hca4CjGVxi+BPgiu5Meuos0THnsO+sfyotkv31wHnd9+l5wMWjfu6Jln+SJzD4i11aVVcdZPpUPTLiQNmTvBp4OfCq6i7GsUqyD7kU+P1uedqzP5PB9dmvJNnZ5bs1yc8x/dmpqoeq6kdV9SjwV+y7zDA12Q9wvOwCruouM3wJeJTBg8amJjcs+X26Bvg94PKh6ash+0bgseW/o8/xMombGV0nBvgU8MEDvH4TP37D97n8+M2Y+5jczZhFswOnAXcBM/uNr4bs64eW3wRc2S2fwY/fSPrStB4z3Zyd7LvhO/XZgWOHls9jcM15ao6ZJXK/DvjTbvnZDC45ZFpyH+x46b5Xv7Df2NRnZ3Dt/8Xd8qnALd3yso/1Q/6XGvpL/AaDmxe3A7d1f04HfpfBWcUjwEPA54e2uYDBHfh76O54T1n2Hd03wWNjH19F2T8D3NGN/z2Dm8CPHYQf6bJ/laEfyNOSfb85O9lX/lOfHfibLtvtDJ5/NfzDYOLHzBK5Dwf+tjtmbgVeMk25D3a8AJ8EXrfINlOdvRu/hcEPqe3Ar3Tzl32s+3gHSWrQxG/4SpIOPctfkhpk+UtSgyx/SWqQ5S9JDbL8JalBlr8kNej/AH0qikm0ynajAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline \n", + "import matplotlib.pyplot as plt\n", + "heads = np.random.binomial(500, .5, size=500)\n", + "histogram = plt.hist(heads, bins=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Task 1\n", + "## write a program to produce Fibonacci numbers up to 1000000" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "def fibonacci(x):\n", + " if(x <= 1):\n", + " return x\n", + " return fibonacci(x-1)+ fibonacci(x-2)\n", + "\n", + "x = int(input())\n", + "if(x >= 0 or x <= 1000000): \n", + " y= fibonacci(x)\n", + " print(y)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Task 2\n", + "## write a program to simulate 1000 tosses of a fair coin (use np.random.binomial)\n", + "## Calculate the mean and standard deviation of that sample" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(0) = Tails (1) = Heads\n", + "Mean: 0.504\n", + "Standard Drviation: 0.49998399974399177 \n", + "\n", + "[1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1\n", + " 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0\n", + " 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0\n", + " 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1\n", + " 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1\n", + " 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0\n", + " 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1\n", + " 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1\n", + " 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0\n", + " 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1\n", + " 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0\n", + " 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0\n", + " 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1\n", + " 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1\n", + " 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1\n", + " 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0\n", + " 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1\n", + " 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1\n", + " 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1\n", + " 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1\n", + " 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1\n", + " 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 1\n", + " 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0\n", + " 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0\n", + " 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0\n", + " 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0\n", + " 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1\n", + " 1]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "x = np.random.binomial(1, .5,1000)\n", + "print( \"(0) = Tails (1) = Heads\")\n", + "print(\"Mean: \",np.mean(x))\n", + "print (\"Standard Deviation: \", np.std(x),\"\\n\")\n", + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Task 3\n", + "## Produce a scatterplot of y = 0.5*x+e where x has gaussian (0, 5) and e has gaussian (0, 1) distributions \n", + "### use numpy.random.normal to generate gaussian distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAq7ElEQVR4nO3deXwUdZ7/8dc3JyQkkAAhQC4SCOEOEC6RQwREVFDBA+/BEZhZZ3Z0dHTH+e0c7q4IzqijriEC3o7n6LgqCKgkgNw3QkhIJ+SAQBLIQc4+vr8/OmrUQALp7urj83w8eNjpLqvexuRNdXXVp5TWGiGEEJ7Lz+gAQgghOkaKXAghPJwUuRBCeDgpciGE8HBS5EII4eECjNhojx49dEJCghGbFkIIj7V79+5yrXXPHz9vSJEnJCSwa9cuIzYthBAeSyl1vLXn5dCKEEJ4OClyIYTwcFLkQgjh4aTIhRDCw0mRCyGEh5MiF0IIDydFLoQQHs6Q88iFEMIbWG2aerOVuiYLDU026swW6pqsNDRZqWuyUm+2Ut9kf73ebCPQX3HH+Hg6Bfo7NIcUuRDCa1msNuqay7S+1XJtfs3c/FqLxw3NBf3945b/rv1xk8V2UXmCAvyYOTiauO4hDv3vlCIXQhhCa43ZqluU54VLs765eFsu84PlW6zn28dm68XdOMdPQUhQAJ0C/QkJ8qdzoD+dg+yPo8MD6dz8XEiQP52DAr573CnIn5AWjzsH+nOwuIrXtx2n8EwdoUH+LBgbx72T+tG7a2eHfy+lyIUQrdJa02ixtbKX+n2xtizc+ibrD/d+v9vbtfygaFu+brVdXNH6+ylCWpTrd4Ub5E9ESJD9+ebXf/L4u2IOaFHG3xdzp0B/ggP8UEpd8vfMatOsP1zKMxty2V9USffQIB6amcyd4xPoGhJ4yettS4eLXCnVCcgCgpvX977W+o8dXa8QwhiPfXiQj/aWUG+2cpE9S6C/ai7GgO9KsnOQP12CA+jZJfgnBXy+vd9vH/94XUEB7nl+RqPFyod7SsjIMmEqryUuMoTHrx/KTaNjHH48vDWO2CNvBKZprc8ppQKBzUqpNVrrbQ5YtxDChbbmVfDm9kJmDO5FSnRYKyUb8KOS/eHhhEB/9yxaZ6luMPPmtkJWb8mnrKaRoX3Def62kVw9tDf+fpe+Z3+xOlzk2n735nPNXwY2/5E7OgvhYbTWLF2bTZ+unXhuwUiX7El6qtPVDazaks9b2wqpabRwef8ePH1zKhP7d+/QoZlL5ZBj5Eopf2A30B94QWu9vZVlFgGLAOLi4hyxWSGEA312sJT9RZUsnz9cSvw8TGXnyMgy8c89JVhsNq4e1pslk5MYFtPV0FwOKXKttRVIVUp1Az5USg3VWh/60TIZQAZAWlqa7LEL4UbMVhvLP88mJTqMG0fFGB3H7ewrqiR9Yx6fHy4l0N+Pm9JiuG9SIgk9Qo2OBjj4rBWtdaVS6itgFnCoreWFEO7h7R2FFFTU8fI9Y1x6bNedaa3ZmFPGisw8tpnOEN4pgF9OTeKey/rRMyzY6Hg/4IizVnoC5uYS7wzMAJ7scDIhhEvUNlp49otcxvWLZOrAn9xFzOdYrDY+OXCS9Mw8sktriA7vxB+uGcStY+PoEuyeZ2w7IlVv4NXm4+R+wLta608csF4hhAu8tMlE+bkmVt49yJAP6txFfZOVd3YW8tKmfEoq6+kf1YXl84czN7Wv2572+C1HnLVyABjpgCxCCBcrq2kkI8vE7GHRpMZ2MzqOIc7WNvHq1gJe/bqAs3VmRsdH8Kc5Q7gyJQo/DznM5J7vE4QQLvHcl7k0WWw8fFWK0VFcrvhsHSs35fPOziLqzVauTIliydQkxiREGh3tokmRC+Gj8streWt7IQvGxtHPTc6+cIXs0mpWZJr4eP8JFDAntQ+LJycxMDrM6GiXTIpcCB/11OdHCQrw49dXDjA6itNprdmef4b0zDw2Hi0jJMifuyckcO+kfvTt5vghVq4mRS6ED9pXVMmnB0/y71cOcLtT6RzJZtOsO3yK9Mw89jUPsfrtjGTunBBPt5Ago+M5jBS5ED5Ga83SNUfo0SWI+yYnGh3HKRotVj7aW8KKLBOmslpiIzvz+Nwh3JQW65VXrUqRC+FjNh4tY5vpDH+ZO8Rtz4u+VDUNZt7abh9idaq6kcG9w/n7gpHMHhpNgBcP9PKu/4tCiAuy2jRPrs0moXsIC8Z6z8yj0zUNvLylgDe2HaemwcJlSd1ZPn8Ekwb08Ilz46XIhfAhH+4tIbu0hhduG+UVI2fzy2vJyDLxwZ5izFYbs4f2ZvGURIbHdDM6mktJkQvhIxrMVv627igjYroye1i00XE6ZH9RJemZeaz9xj7Eav7oGBa50RArV5MiF8JHvLa1gBNVDfz15lSPPNygtSYrt5z0jXlsNVUQ1imAX0xJ4p6JCUSFdTI6nqGkyIXwAVV1Zl74Ko+pA3syIam70XEuisVq49ODJ1mRaeLwyWp6hQfz+9kpLBgbR1gn590H05NIkQvhA/438xjVDWYemeU5l+LXN1l5b3cRL20yUXSmnqSeoSybN5y5I/sQHOB9pxB2hBS5EF7uRGU9L28p4MaRMQzqHW50nDadrW3i9W3HeeXrAs7UNjEqrhv/75rBTB/Uy2OGWLmaFLkQXu5v63MAeHBmssFJLqyksp6Vm0y8s7OIuiYr01KiWDIliTEJER55TN+VpMiF8GLZpdV8sKeY+yYluu1MkaOlNazIzOPj/ScAmDOiD4umJJIS7f7vHtyFFLkQXmzZ2qOEBdtvUeZOtNbsLDhLemYeX2afpnOgP3dOiOfnbvwXjjuTIhfCS20zVfBl9mkevTrFbQZE2WyaDUfsQ6z2FFYSGRrEA9OTuWtCPBGh7pHRE0mRC+GFtNY8sSab3l07cc9lCUbHocliax5ilUdeWS0xEZ35y9wh3DQ6ls5BcgZKR0mRC+GF1hwqZX9RJcvnDzd02l9Ng5l/7Chk1Wb7EKtBvcN59tZUrhnW26uHWLmaFLkQXsZstbH886MM7BXGjaNiDMlQVtPIy1vyeb15iNWExO4smz+CyT4yxMrVpMiF8DJv7ywiv7yW1fek4e/i864LymvJ2GTi/d32IVazhkSzZEoSI3z0xs6uIkUuhBepbbTw7IZcxvaL5IqBUS7b7sHiKtIz81hz6CQBfn7MG92X+yYlktizi8sy+LIOF7lSKhZ4DegFaCBDa/1sR9crhLh4L20yUX6ukZfuGu30QxhaazYfKyc9M48txyoICw5g0eQkFk5MICrct4dYuZoj9sgtwG+11nuUUmHAbqXUeq31YQesWwjRTmU1jbyUZWL2sGhGxkU4bTsWq43PDpWyIjOPb05UExUWzKNXp3DbuDjCZYiVITpc5Frrk8DJ5sc1SqkjQF9AilwIF3ruy1waLDYemjnQKetvMFt5b1cRL23Kp/BMHYk9Q3ly3jCuH9lXhlgZzKHHyJVSCcBIYLsj1yuEuLCC8lre2l7IgrGxDj8uXVnXxOtb7UOsKmqbSI3txu9nD2LmYBli5S4cVuRKqS7AB8BvtNbVrby+CFgEEBfnPfcKFMIdLF93lKAAP3595QCHrfNEZT2rNufzjx2F1DVZmTqwJ0umJDGuX6ScQuhmHFLkSqlA7CX+ptb6n60to7XOADIA0tLStCO2K4Sw3/bs0wMn+fWVAxxyp5zcUzWkZ5r4174SNHDd8N4snpLkESNwfZUjzlpRwCrgiNb6bx2PJIRoL/ul+Efo0SWIRZMTO7SunQVnWJGZx4Yj9iFWd4yP5+eT+hETEeKgtMJZHLFHPhG4EziolNrX/NzvtdafOWDdQogL2JhTxjbTGf4ydwhdgi/+19lm03yRfZr0zDx2Hz9LREggv5k+gLsmJBApQ6w8hiPOWtkMyAEzIVzMatM8uSab+O4h3Drm4j53arLY+Ne+EjKyTOSePkffbp3503WDuXlMLCFBcp2gp5H/Y0J4qI/2lpBdWsPzt40kKKB9A6jONVp4u3mI1cmqBlKiw3jmllSuGd6bQBli5bGkyIXwQA1mK39bn8PwmK7MHtq7zeXLahp59esCXttaQHWDhfGJkfzPjcOYmtxTzkDxAlLkQnig17YWUFJZz/Kbhl/wXO7jFbVkZNmHWDVZbVw1OJrFUxKdeuWncD0pciE8TFWdmRe+ymPqwJ5cltSj1WUOlVTxYmYeaw7ah1jdOKov901OJEmGWHklKXIhPMz/Zh6jusHMI7NSfvC81potxypIz8xj87FywoIDuG9yIgsn9qOXDLHyalLkQniQE5X1vLylgBtG9v3uAh2rTbPm0ElWZJo4WFJFz7BgHpmVwu3jZYiVr5AiF8KDPL0+B4DfzhxIg9nK+7uLeWmTieMVdfTrEcoTNw7jhpF9Db29m3A9KXIhPMTR0ho+2FPMTaNj+XBPMa98XUD5uSZGxHTl0dtHMXNItMvvCCTcgxS5EB7igXf2YdPwzq4iAKYk24dYjU+UIVa+TopcCDd37HQNC1/ZReGZOgDmpvZh8eQkBveRIVbCTopcCDe1+/gZXtxoYsORU989t+HByfSPCjMwlXBHUuRCuBGbTfPVUfsQq50FZ+kWEkhyry7knDrHsvnDpcRFq6TIhXADZquNj/edYEVWHjmn7EOs/vPawcwbHcP1L2whuVcX5o2KMTqmcFNS5EIYqLbRwj92FLJ6cz4nqhoY2CuMp28ZwbXD+xDo78fr246TX17LqrvT5IwUcV5S5EIYoPzct0OsjlNVb2Zsv0j++4ZhTB34/RCr2kYLz27IZWy/SKalRBmcWLgzKXIhXKiwoo6XNpl4d1cRTVYbMwb1YsnUJEa1MsRq5aZ8ys81knHXaDm9UFyQFLkQLnCopIoVWSY+PXACfz/FDSP7smhyEv2jWh9iVX6ukYysPK4eGt1qyQvRkhS5EE6itWZrXgUvZuaxKbecLsEB3DcpkYWXtz3E6rkvcmmw2Hj4qoEuSis8mRS5EA5mtWnWHiplRVYeB4qr6NElmN/NGsjt4+Lp2rntIVYF5bW8ub2QW8fEkihjZ0U7SJEL4SANZisf7CnmpSwTBRV1JHQP4X9uGMaNoy5uiNVT644S6O/Hv08f4MS0wptIkQvRQVX1Zt7YdpyXtxRQfq6R4TFd+d/bR3HVJQyx2l9UyScHTvLraf2JCpMZ4qJ9pMiFuESlVQ2s3pLPW9sLOddoYdKAHvxiSioTkrpf0lkmWmuWrsmme2gQi6YkOSGx8FZS5EJcpGOna1iRaeKjfSVYbZprh/dh0eREhvbt2qH1ZuaUsdVUwZ/nDKFLsPxqivZzyE+LUmo1cC1wWms91BHrFMLd7D5+lvTMPNYfPkVwgB8LxsZx36REYiNDOrxuq82+Nx7fPYQFY+MckFb4Ekf9tf8K8DzwmoPWJ4Rb0Lp5iNVGEzsKztC1cyC/ntafuy9LoHuXYIdt56O9JWSX1vDcgpEEBfg5bL3CNzikyLXWWUqpBEesSwh3YLba+L/9J1iRaeLoqRr6dO3E/7t2MLeOiSXUwYc9GsxW/rY+h+ExXblmWG+Hrlv4BpcdiFNKLQIWAcTFyVtH4Z7qmiy8vaOIVZvzKamsJ7lXF/560wjmpNqHWDnD61uPU1JZz/L5w/GTwVjiErisyLXWGUAGQFpamnbVdoVoj4pzjby69TivbS2gss7MmIQI/jJ3CFcMjHJquVbVmXn+q2NMSe7JZf17OG07wrvJR+PCpxWd+X6IVYPZxvRBvfjF1ERGx0e6ZPsvZuZR3WDmkVkpLtme8E5S5MInHT5RTXpmHp8ePImfgutT+7J4SqJL78BzorKel7fkc0NqX7n/pugQR51++A9gKtBDKVUM/FFrvcoR6xbCUbTWbDVVkJ5pIiunjNAgfxZOTGDh5f3o3bWzy/M8vT4HreHBmcku37bwLo46a2WBI9YjhDNYbZp135SSnpnH/uIqenQJ4uGrBnLHuHi6hrQ9xMoZjpbW8MGeYhZO7EdMRMfPQxe+TQ6tCK/VYLby4d4SMrJM5JfXEt89hP+6fijzR8dc1BArZ1i2NpvQ4AD+7Yr+huYQ3kGKXHid6gYzb24rZPWWfMpqGhnWtysv3DaKWUMvfoiVM2w3VfBF9mkemZVCRGiQ0XGEF5AiF17jVHUDqzfn82aLIVbP3JLKZZc4xMoZtNYsXZtNdHgnfjYxweg4wktIkQuPl1d2joxMEx/uLcFiszF7WG+WTEnq8BArZ1h7qJS9hZUsmzfc8MM7wntIkQuPtbfQPsRq3eFTBPn7cfOYGO6blEh891Cjo7XKbLWx/POjJPfqwrzRMUbHEV5Eilx4FK01G3PKSN+Yx/Z8+xCr+6+wD7Hq4cAhVs7wzs4iTOW1rLwrzS2O1QvvIUUuPILZauOTA/YhVtmlNfTu2ok/XDOIW8fGecTs7tpGC89syGVsQiRXDooyOo7wMu7/GyB8Wl2ThXd2FrFyk32I1YCoLjx10wjmjOjjUeNeV23Op/xcIxl3jXabD16F95AiF27pTG0Tr35dwGtbCzhbZyYtPoI/zxnCtBTnDrFyhvJzjazIzGPWkGhGxUUYHUd4ISly4VaKztSxanM+7+wsot5sZfqgKJZMSSItwTVDrJzhuS9yabDYeHjWQKOjCC8lRS7cwpGT9iFWnxw4iQLmNg+xSu7luiFWznC8opY3txdyy5hYknp2MTqO8FJS5MIwWmu2mc6QnplHZvMQq59dZh9i1aeb64dYOcPyz48S6O/Hb64cYHQU4cWkyIXL2WyadYdLeTHTxP6iSrqHBvHQzGTuHJ9g2BArZ9hfVMknB07y62n9iQrvZHQc4cWkyIXLNFqsfLjHPsTKVF5LXGQIj18/lJvcYIiVo2mtWbomm8jQIO6bnGh0HOHlpMiF01U3mHlreyGrN+dzuqaRIX3CeW7BSK4eGk2Ak+6DabTMnDK2mir403WDCevkPe8yhHuSIhdOc7q6gdVbCnhz23FqGi1M7N+dv948gsv79/Dqc6ltNvveeFxkCLeNizc6jvABUuTC4Uxl53hpk4kPdtuHWF091D7EaliM+w2xcoaP9pWQXVrD3xeM9KiLloTnkiIXDrOvqJIVmXms/aaUQH8/bkqzD7FK6OGeQ6ycocFs5a/rchjWtyvXDuttdBzhI6TIRYdorcnMKSM9M49tpjOEdwrgl1OTuOeyfvQMc+8hVs7wxrbjlFTWs2z+cI+7AlV4LilycUksVhufHjxJeqaJIyeriQ7vxGOzB7FgnGcMsXKGqnozz391jMnJPZnYv4fRcYQP8c3fOHHJ6pusvLuriJc2mSg+W09Sz1CWzR/O9al9ff548Isb86iqN/PorBSjowgfI0Uu2uVsbROvbT3Oq1sLOFPbxOj4CP543RCu9MAhVs5wsqqel7fkc31qXwb3CTc6jvAxUuTigorP1rFy0/dDrK5MiWLJ1CTGePAQK2d4en0OWsODM5KNjiJ8kEOKXCk1C3gW8AdWaq2XOmK9wjjZpdWsyDTx8f4TKGBOah8WT05iYLRnD7FyhpxTNby/u5iFE/sRGxlidBzhgzpc5Eopf+AFYAZQDOxUSn2stT7c0XUL19JasyPfPsTqq6NlhAT5c/eEBO6d1I++XjLEyhmWrc0mNDiAf7uiv9FRhI9yxB75WOCY1toEoJR6G5gLSJF7CJtNs/7IKdIz89hbWElkaBAPzkjmrgnxdAsJMjqeW9uRf4YNR07zu1kDiQiV75UwhiOKvC9Q1OLrYmDcjxdSSi0CFgHExcU5YLOioxotVj7aW8KKLBOmslpiIzvz+NwhzB8dS+cg7xpi5Qxaa55Yc4To8E4snNjP6DjCh7nsw06tdQaQAZCWlqZdtV3xUzXfDrHaks+p6kYG9w7n7wtGMtuLh1g5w+fflLK3sJIn5w3zuumNwrM4oshLgNgWX8c0PyfczOmaBl7eUsAb245T02DhsqTuLJ8/gkkDvHuIlTOYrTaWrT3KgKguzBsVY3Qc4eMcUeQ7gQFKqX7YC/xW4DYHrFc4SH55LRlZJj7YU4zZauPqodEsnpzEiNhuRkfzWO/uKsJUXstLd6XJuxhhuA4XudbaopS6H/gc++mHq7XW33Q4meiwA8WVpGfmseaQfYjVvFExLJqcSD8fGmLlDHVNFp7ZkMuYhAimD4oyOo4QjjlGrrX+DPjMEesSHaO1ZlNuOemZeXydV0FYpwCWTEniZxMTiAqT2405wspN+ZTVNJJ+x2g5JCXcglzZ6SW+HWK1ItPE4ZPV9AoP5vezU1gwNk7uUONAFecaWZGZx1VDejE6PsLoOEIAUuQer77Jynu77UOsis7Uk9gzlGXzhjN3ZB+CA+RMCkd77stjNFhs/E4GYwk3IkXuoSrr7EOsXvnaPsRqZFw3/nDNYGYM6iVDrJzkeEUtb24/zi1jYknq2cXoOEJ8R4rcw5yorGflpnze3llIXZOVKwb2ZMmUJMb2i5TjtU721LocAvz8+M2VA4yOIsQPSJF7iJxTNaRn5vHxvhNoYM6IPiyekkhKtIxMdYUDxZX83/4T/Gpaf6LC5UNj4V6kyN3czoIzpG/M44vs03QO9OfOCfHce3k/YiJkyp6raK1ZuiabyNAgFk1ONDqOED8hRe6GbDbNhiOnWJFlYvfxs0SEBPLAdPsQKxnM5HpZueV8nVfBH68bLGcACbckRe5Gmiw2PtpXQkaWiWOnzxET0Zk/zxnCzWkyxMooNpt9bzw2sjO3j4s3Oo4QrZIidwPnGi38Y3shqzbnU1rdwKDe4Tx7ayrXDOstl38b7KN9JRw5Wc2zt6b6/D1JhfuSIjdQWU0jr3ydz+tbj1PdYGFCYneWzhvGlOSecgaKG2gwW/nruhyG9e3KdcP7GB1HiPOSIjdAQXktGZtMvL/bPsRq1pBoFk9JIlWGWLmVN7Ydp6SynmXzh8u5+cKtSZG70MHiquYhVicJ8PNj3ui+3DcpkUS5uMTtVNWbef6rY0wa0IOJ/XsYHUeIC5IidzKtNZuP2YdYbTlWQVhwAIsmJ7FwYoKcj+zG0jPzqKo38+jVcim+cH9S5E5isdpYc6iUFVl5HCqpJiosmEevTuG2cXGEyylsbu1kVT2rN+dzfWpfhvTpanQcIdokRe5gDWYr7+0q4qVN+RSeqSOxRyhLbxzGDaP6yhArD/HM+ly0hgdnJBsdRYh2kSJ3kKo6M69tLeCVrwuoqG0iNbYbv589iJmDZYiVJ8k9VcN7u4v42cR+xEbK1bPCM0iRd9CJynpWbc7nHzvsQ6ymNg+xGidDrDzSk2uzCQ0K4P4r+hsdRYh2kyK/RLmnakjPNPGvfSVo4LrhvVk8JYlBvWWIlafakX+GDUdO8/BVA2UUgvAoUuQX6UBxJX//IpcNR07TKdCPO8bbh1jJ23DPprXmiTVH6BUezMKJ/YyOI8RFkSK/CGsPneRX/9hLaHAA/37lAO6+LIFI2XPzCp9/U8rewkqW3jhM5toIjyNF3k4f7i3mofcOMCKmKy/fM5auIXIKobewWG0sW3uU/lFdmD86xug4Qlw0mQLUDm9tL+TBd/czNiGS1+8dJyXuZd7ZVYSpvJZHZqXIkDLhkWSPvA2rNufz+CeHuWJgT168YzSdAuVttzepa7LwzIZc0uIjmD4oyug4QlySDu1+KKVuUkp9o5SyKaXSHBXKXTz/ZS6Pf3KYq4dGs+LONClxL7RqUz5lNY38x+wUOV1UeKyOvo88BNwIZDkgi9vQWrNsbTZPrcvhhpF9eW7BSJlF7YUqzjWyIsvEVUN6MTo+0ug4QlyyDh1a0VofAbxqT8Zm0/zlk8O88nUBt42L47/mDpUrM73Uc18eo95s5eGrZDCW8GwuO0aulFoELAKIi4tz1WYvitWm+f0/D/LOriLuvbwff7hmkFf9JSW+V1hRx5vbj3NzWiz9o2SMsPBsbRa5UmoDEN3KS49prf/V3g1prTOADIC0tDTd7oQuYrba+O27+/l4/wl+Pa0/D8xIlhL3YsvXHcXfT/Gb6QOMjiJEh7VZ5Frr6a4IYqRGi5X739rL+sOneGRWCr+YmmR0JOFEB4ur+L/9J7j/iv70kpnwwgv4/OmH9U1WFr+xm6ycMv48Zwh3X5ZgdCThRFprlq49QkRIIIunJBodRwiH6OjphzcopYqBCcCnSqnPHRPLNc41Wrj75R1syi1j2bzhUuI+ICu3nC3HKvjVtAGEyQ0+hJfo6FkrHwIfOiiLS1XVmbnr5R0cKqni2VtHMmeE3CXd29lsmqVrsomN7Mzt493zA3chLoVPHlopP9fInat2kHf6HC/ePoqZQ1r7LFd4m3/tL+HIyWqevTVV7tYkvIrPFXlpVQO3r9xGSWU9K+9OY3JyT6MjCRdoMFt56vMchvYN57rh8u5LeBefKvKiM3XctnIbZ2vNvLZwHGP7ydV8vuKNbccpqaznyXnD5QIv4XV8psjzys5xx8rt1DVZeePn40iN7WZ0JOEiVfVmnv/qGJMG9ODyAT2MjiOEw/lEkWeXVnPHyu0AvL1ovNyOzcekZ+ZRWWfmkVlyKb7wTl5f5AeKK7lr9Q6CA/x48+fj5XJsH1Na1cDqzflcn9qHoX27Gh1HCKfw6iLfWXCGn728k24hgbz18/HEdZf7avqap9fnoDX8duZAo6MI4TReO5t1c245d63aQVRYMO8tmSAl7oNyT9Xw3u4i7hgfLzfHFl7NK/fINxw+xS/f2kNij1Bev3ccPcOCjY4kDPDk2qOEBgVw/7T+RkcRwqm8bo/8kwMnWPLGbgZFh/H2ovFS4j5qZ8EZNhw5xZKpSUSGBhkdRwin8qo98vd2FfHIBwcYHR/B6nvGyCwNH6W15onPjtArPJiFE/sZHUcIp/OaPfLXtxbw8PsHmNi/B68uHCsl7sM+/+YUeworeWB6Mp2D5FJ84f28Yo98RWYeT6zJZvqgKJ6/bZTcJNmHWaw2ln2eTVLPUOaPjjE6jhAu4dFFrrXmmQ25PPtFLtcO783Tt6QS6O81bzLEJXh3VzGmsloy7hxNgPwsCB/hsUWuteaJNdlkZJmYPzqGJ+cNx19maPi0uiYLT2/IIS0+ghmDexkdRwiX8cgit9k0//nxId7YVshdE+L503VDZBCSYNWmfMpqGkm/Y5Tcb1X4FI8rcovVxu8+OMA/95SweEoij85KkV9aQcW5RlZkmZg5uBej42WqpfAtHlXkTRYbD7yzj08PnuTBGcn8alp/KXEBwHNfHqOuycLvZsml+ML3eFSR/+Gjg3x68CR/uGYQP58kN84VdoUVdby5/Ti3jImlf1SY0XGEcDmPKvKfT0pkdHwEt4yR+y2K7z217ij+forfTE82OooQhvCoIk/uFUZyL9njEt87WFzFx/tP8G9XJNErvJPRcYQwhJxoKzzak2uziQgJZPGUJKOjCGEYKXLhsbJyyth8rJxfTRtAuIxkED6sQ0WulFqulMpWSh1QSn2olOrmoFxCXJDNplm6JpuYiM7cPl4+MxG+raN75OuBoVrr4UAO8B8djyRE2z7ef4LDJ6t5+KqBBAfIbB3h2zpU5FrrdVprS/OX2wCZUiScrtFi5al1RxnSJ5zrhvcxOo4QhnPkMfKFwJrzvaiUWqSU2qWU2lVWVubAzQpf8/rW4xSfrefRq1NkNIMQtOP0Q6XUBiC6lZce01r/q3mZxwAL8Ob51qO1zgAyANLS0vQlpRU+r7rBzPNfHWPSgB5MGtDT6DhCuIU2i1xrPf1Cryul7gGuBa7UWktBC6dK35hHZZ2ZR2alGB1FCLfRoQuClFKzgN8BU7TWdY6JJETrSqsaWL0ln7mpfRjat6vRcYRwGx09Rv48EAasV0rtU0qlOyCTEK16ZkMOVpvmoZkyGEuIljq0R6617u+oIEJcSO6pGt7dVcTdlyUQGxlidBwh3Ipc2Sk8wrLPjxIaFMCvpg0wOooQbkeKXLi9XQVnWH/4FEumJhEZGmR0HCHcjhS5cGtaa/7nsyNEhQXzs4kJRscRwi1JkQu3tu7wKfYUVvLAjGRCgjxq6rIQLiNFLtyWxWpj2dpsknqGctNomf4gxPlIkQu39e6uYvLKavndrBQC/OVHVYjzkd8O4Zbqmiw8syGH0fERzBzcy+g4Qrg1KXLhllZvzud0TSP/cXUKSslgLCEuRIpcuJ2Kc42kZ5qYMbgXaQmRRscRwu1JkQu38/xXx6hrsvDILLkUX4j2kCIXbqWwoo43th3n5rRY+keFGR1HCI8gRS7cylPrjuLvp3hgRrLRUYTwGFLkwm0cKqni4/0nuPfyfvQK72R0HCE8hhS5cBtL12QTERLI4ilJRkcRwqNIkQu3sCm3jM3Hyrl/2gDCOwUaHUcIjyJFLgxns2mWrskmJqIzd4yPMzqOEB5HilwY7uP9J/jmRDUPzRxIcIC/0XGE8DhS5MJQjRYrT607yuDe4cwZ0cfoOEJ4JClyYag3thVSfLaeR69Owc9PLsUX4lJIkQvDVDeYef7LXC7v34PJyT2NjiOEx5IiF4ZZkZnH2Tozj16dYnQUITyaFLkwRGlVA6s25zNnRB+G9u1qdBwhPJoUuTDEMxtysNo0D18lg7GE6KgOFblS6nGl1AGl1D6l1DqllJx2INp07HQN7+4q4o7x8cRGhhgdRwiP19E98uVa6+Fa61TgE+A/Ox5JeLsn1x4lJCiA+6/ob3QUIbxCh4pca13d4stQQHcsjvB2uwrOsP7wKZZMSaR7l2Cj4wjhFQI6ugKl1H8DdwFVwBUXWG4RsAggLk4uw/ZFWmueWJNNVFgwCy/vZ3QcIbxGm3vkSqkNSqlDrfyZC6C1fkxrHQu8Cdx/vvVorTO01mla67SePeWcYV/UaLExtE84D80cSEhQh/chhBDNlNaOORqilIoDPtNaD21r2bS0NL1r1y6HbFcIIXyFUmq31jrtx8939KyVAS2+nAtkd2R9QgghLl5H398uVUoNBGzAcWBJxyMJIYS4GB0qcq31PEcFEUIIcWnkyk4hhPBwUuRCCOHhpMiFEMLDSZELIYSHkyIXQggP57ALgi5qo0rVAEddvuGO6QGUGx3iEnhibsnsGpLZNRyZOV5r/ZNL4426Tvpoa1cnuTOl1C5PywyemVsyu4Zkdg1XZJZDK0II4eGkyIUQwsMZVeQZBm23IzwxM3hmbsnsGpLZNZye2ZAPO4UQQjiOHFoRQggPJ0UuhBAeziVFrpSKVEqtV0rlNv8z4jzLxSml1imljiilDiulElyR73zam7t52XClVLFS6nlXZmwlR5uZlVKpSqmtSqlvlFIHlFK3GJBzllLqqFLqmFLq0VZeD1ZKvdP8+najfxa+1Y7cDzb/7B5QSn2hlIo3IuePMl0wc4vl5imltFLK8NP72pNZKXVz8/f6G6XUW67O2Eqetn424pRSXyml9jb/fMx22Ma11k7/AywDHm1+/Cjw5HmW2wjMaH7cBQhxRb6O5m5+/VngLeB5d88MJAMDmh/3AU4C3VyY0R/IAxKBIGA/MPhHy/wSSG9+fCvwjpHf14vIfcW3P7fAL4zO3Z7MzcuFAVnANiDN3TMDA4C9QETz11EekDkD+EXz48FAgaO276pDK3OBV5sfvwpc/+MFlFKDgQCt9XoArfU5rXWdi/KdT5u5AZRSo4FewDrXxLqgNjNrrXO01rnNj08ApwFX3kh1LHBMa23SWjcBb2PP3VLL/473gSuVUsqFGVvTZm6t9Vctfm63ATEuzvhj7fleAzwOPAk0uDLcebQn833AC1rrswBa69Muzvhj7cmsgfDmx12BE47auKuKvJfW+mTz41LspfdjyUClUuqfzW89liul/F2U73zazK2U8gP+CjzkymAX0J7v9XeUUmOx70HkOTtYC32BohZfFzc/1+oyWmsLUAV0d0m682tP7pbuBdY4NVHb2syslBoFxGqtP3VlsAtoz/c5GUhWSm1RSm1TSs1yWbrWtSfzn4A7lFLFwGfArxy1cYddoq+U2gBEt/LSYy2/0FprpVRr5zwGAJOAkUAh8A5wD7DKURlb44Dcv8R+0+liV+0wOiDzt+vpDbwO3K21tjk2pW9TSt0BpAFTjM5yIc07In/D/rvmSQKwH16Ziv1dT5ZSapjWutLIUG1YALyitf6rUmoC8LpSaqgjfvccVuRa6+nne00pdUop1VtrfbK5PFp7G1QM7NNam5r/nY+A8Ti5yB2QewIwSSn1S+zH9YOUUue01uf9UKmjHJAZpVQ48CnwmNZ6m5Oink8JENvi65jm51pbplgpFYD9rWiFa+KdV3tyo5Sajv0v1Sla60YXZTuftjKHAUOBjc07ItHAx0qpOVrrXS5L+UPt+T4XA9u11mYgXymVg73Yd7om4k+0J/O9wCwArfVWpVQn7AO1OnxYyFWHVj4G7m5+fDfwr1aW2Ql0U0p9e6x2GnDYBdkupM3cWuvbtdZxWusE7IdXXnNmibdDm5mVUkHAh9izvu/CbN/aCQxQSvVrznIr9twttfzvmA98qZs/JTJQm7mVUiOBFcAcNzhuC21k1lpXaa17aK0Tmn+Gt2HPblSJQ/t+Pj7CvjeOUqoH9kMtJhdm/LH2ZC4ErgRQSg0COgFlDtm6iz7R7Q58AeQCG4DI5ufTgJUtlpsBHAAOAq8AQa7I19HcLZa/B+PPWmkzM3AHYAb2tfiT6uKcs4Ec7MfmH2t+7i/YS4TmH/L3gGPADiDRyO/rReTeAJxq8X392N0z/2jZjRh81ko7v88K+yGhw819casHZB4MbMF+Rss+YKajti2X6AshhIeTKzuFEMLDSZELIYSHkyIXQggPJ0UuhBAeTopcCCE8nBS5EEJ4OClyIYTwcP8f1nww4r8v/uEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "x = np.random.normal(0, 5, 5)\n", + "e = np.random.normal(0, 1, 5)\n", + "y = .5*x+e\n", + "plt.plot(y, x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}