-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanimation_multi.py
256 lines (233 loc) · 8.85 KB
/
animation_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import xarray as xr
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
from mpl_toolkits.basemap import Basemap
import imageio.v2 as imageio
import os
import multiprocessing
from itertools import islice
from pathlib import Path
from argparse import ArgumentParser
import sys
import argparse
'''
Example run:
python animation_multi.py -p PathToWW3OutputFile\ww3.202209.nc -v hs -m True -t 3
where:
-p = path to .nc file,
-o = dir path for the .jpeg and .gif outputs. If None an animation/ dir will be created under nc_path
-v = ww3 variable, e.g. hs
-s = initial model timestep, default = 0
-e = final model timestep, default = -1
-t = frequency of timestep, default = 1 (i.e. every timestep). if -t 2, then every other timestep
-min =minimum variable (e.g. 'hs') for legend, default = var.min()
-max =maximum variable (e.g. 'hs') for legend, default = var.max()/2
-m = will use basemap for the background?, default = False
-y = space between parallels (lat), default = 5deg
-x = space between meridians (lon), default = 10deg
-b = plot buffer, default = 1deg
-n = name for legend, default=netcdf file long_name
'''
def ww3_gif_pre(nc_path,
var='hs',
time_start=0,
time_end=-1,
vmin=None,
vmax=None,
b_map=False,
par_space=5,
mer_space=10,
mapping_buffer=1,
long_name=None):
'''
pre-process ww3 outputs to create figure
'''
ds = xr.open_dataset(nc_path)
lon = ds.variables['longitude'][:]
lat = ds.variables['latitude'][:]
var_data = ds.variables[var][time_start:time_end].data
# nv needs to be transposed if it's not in the (N, 3) shape
nv = ds.variables['tri'][:] - 1 # Adjust for 0-based indexing if necessary
if long_name is None:
long_name = ds.variables[var].attrs['long_name'] if 'long_name' in ds.variables[var].attrs else var
units = ds.variables[var].attrs['units'] if 'units' in ds.variables[var].attrs else 'no units'
extents = np.array((np.array(lon).min(),
np.array(lon).max(),
np.array(lat).min(),
np.array(lat).max()))
if b_map is not None:
m = Basemap(llcrnrlon=extents[0]-mapping_buffer,
llcrnrlat=extents[2]-mapping_buffer,
urcrnrlon=extents[1]+mapping_buffer,
urcrnrlat=extents[3]+mapping_buffer,
rsphere=(6378137.00, 6356752.3142),
resolution='l',
projection='cyl',
lat_0=extents[-2:].mean(),
lon_0=extents[:2].mean(),
lat_ts=extents[2:].mean(),
epsg=4326)
else:
m=None
parallels = np.arange(np.floor(extents[2]), np.ceil(extents[3]), par_space)
meridians = np.arange(np.floor(extents[0]), np.ceil(extents[1]), mer_space)
if vmin is None:
vmin = var_data[~np.isnan(var_data)].min()
if vmax is None:
vmax = var_data[~np.isnan(var_data)].max()/2
triangulation = tri.Triangulation(lon, lat, triangles=nv)
return triangulation,long_name,m,parallels,meridians,ds,vmin,vmax
def static_plot(triangulation,long_name,m,parallels,meridians,ds,vara,n,vmin,vmax,output_dir):
fig = plt.figure(figsize=(4.5,3.5)) # units are inches for the size
ax = fig.add_subplot(111)
if m is not None:
m.drawcoastlines()
m.fillcontinents(color='#B0B0B0',alpha=0.65)
m.drawparallels(parallels, labels=[1, 0, 0, 0], linewidth=1)
m.drawmeridians(meridians, labels=[0, 0, 0, 1], linewidth=1)
m.arcgisimage(service='World_Imagery', xpixels = 500, verbose= False)
tp = ax.tripcolor(triangulation, ds.variables[vara][n].data, shading='flat', cmap='jet', vmin=vmin, vmax=vmax)
div = make_axes_locatable(ax)
cax = div.append_axes("right", size="5%", pad=0.2)
cb = fig.colorbar(tp, cax=cax, extend='both',boundaries=np.arange(0,vmax))
cb.set_label(long_name)
ax.set_title(str(np.array(ds['time'][n])).split('.')[0])
fig.tight_layout()
fig.savefig(output_dir/'{:04d}.jpeg'.format(n))
plt.close(fig)
if __name__ == '__main__':
parser_arg = argparse.ArgumentParser(
prog="animation_multi.py",
usage="%(prog)s",
description="Creates .gif from ww3.nc output",
)
parser_arg.add_argument(
"-p",
"--nc_path",
required=True,
help="path to .nc file",
)
parser_arg.add_argument(
"-o",
"--output_dir",
required=False,
help="dir path for the .jpeg and .gif outputs. If None an animation/ dir will be created under nc_path",
)
parser_arg.add_argument(
"-v",
"--ww3_variable",
required=True,
help="ww3 variable, e.g. 'hs'",
)
parser_arg.add_argument(
"-s",
"--time_start",
required=False,
help="initial model timestep, default = 0",
)
parser_arg.add_argument(
"-e",
"--time_end",
required=False,
help="final model timestep, default = -1",
)
parser_arg.add_argument(
"-t",
"--timestep",
required=False,
help="frequency of timestep, default = 1 (i.e. every timestep). if -t 2, then every other timestep",
)
parser_arg.add_argument(
"-min",
"--vmin",
required=False,
help="minimum variable (e.g. 'hs') for legend, default = var.min()",
)
parser_arg.add_argument(
"-max",
"--vmax",
required=False,
help="maximum variable (e.g. 'hs') for legend, default = var.max()/2",
)
parser_arg.add_argument(
"-m",
"--b_map",
required=False,
help="will use basemap for the background?, default = False",
)
parser_arg.add_argument(
"-y",
"--par_space",
required=False,
help="space between parallels (lat), default = 5deg",
)
parser_arg.add_argument(
"-x",
"--mer_space",
required=False,
help="space between meridians (lon), default = 10deg",
)
parser_arg.add_argument(
"-b",
"--mapping_buffer",
required=False,
help="plot buffer, default = 1deg",
)
parser_arg.add_argument(
"-n",
"--long_name",
required=False,
help="name for legend, default=netcdf file long_name",
)
args = parser_arg.parse_args()
nc_path=Path(args.nc_path)
if args.output_dir is None:
output_dir=nc_path.parent/"animation"
Path(output_dir).mkdir(parents=True, exist_ok=True)
if args.time_start is None:
args.time_start=0
if args.time_end is None:
args.time_end=-1
if args.timestep is None:
args.timestep=1
if args.par_space is None:
args.par_space=5
if args.mer_space is None:
args.mer_space=10
if args.mapping_buffer is None:
args.mapping_buffer=1
gif_inp = ww3_gif_pre(nc_path,
var=args.ww3_variable,
time_start=args.time_start,
time_end=args.time_end,
vmin=args.vmin,
vmax=args.vmax,
b_map=args.b_map,
par_space=args.par_space,
mer_space=args.mer_space,
mapping_buffer=args.mapping_buffer,
long_name=args.long_name)
manager = multiprocessing.Manager()
return_dict = manager.dict()
for n in range(int(args.time_start), len(gif_inp[5]['time'][int(args.time_start):int(args.time_end)]), int(args.timestep)):
p = multiprocessing.Process(target=static_plot, args=(gif_inp[0],
gif_inp[1],
gif_inp[2],
gif_inp[3],
gif_inp[4],
gif_inp[5],
args.ww3_variable,
n,
gif_inp[6],
gif_inp[7],
output_dir,))
p.start()
p.join()
files = os.listdir(output_dir)
images = []
for file in files:
images.append(imageio.imread(output_dir/file))
os.remove(output_dir/file)
imageio.mimsave(output_dir/'animation.gif', images)