-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcompute_ssim_index.m
executable file
·553 lines (491 loc) · 18.1 KB
/
compute_ssim_index.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
function [mssim, ssim_map] = compute_ssim_index(img1, img2, K, window, L)
%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names appear on all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Kindly report any suggestions or corrections to [email protected]
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size:
% size(img1) - size(window) + 1.
%
%Default Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];
% window = ones(8);
% L = 100;
% [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
% mssim %Gives the mssim value
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
%
%========================================================================
Lmax = 1;
if (nargin < 2 | nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) | (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); %
K(1) = 0.01; % default settings
K(2) = 0.03; %
L = Lmax; %
end
if (nargin == 3)
if ((M < 11) | (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = Lmax;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = Lmax;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);
mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean(ssim_map(:));
return
function h = fspecial(varargin)
%FSPECIAL Create 2-D special filters.
% H = FSPECIAL(TYPE) creates a two-dimensional filter H of the
% specified type. Possible values for TYPE are:
%
% 'average' averaging filter
% 'disk' circular averaging filter
% 'gaussian' Gaussian lowpass filter
% 'laplacian' filter approximating the 2-D Laplacian operator
% 'log' Laplacian of Gaussian filter
% 'motion' motion filter
% 'prewitt' Prewitt horizontal edge-emphasizing filter
% 'sobel' Sobel horizontal edge-emphasizing filter
% 'unsharp' unsharp contrast enhancement filter
%
% Depending on TYPE, FSPECIAL may take additional parameters
% which you can supply. These parameters all have default
% values.
%
% H = FSPECIAL('average',HSIZE) returns an averaging filter H of size
% HSIZE. HSIZE can be a vector specifying the number of rows and columns in
% H or a scalar, in which case H is a square matrix.
% The default HSIZE is [3 3].
%
% H = FSPECIAL('disk',RADIUS) returns a circular averaging filter
% (pillbox) within the square matrix of side 2*RADIUS+1.
% The default RADIUS is 5.
%
% H = FSPECIAL('gaussian',HSIZE,SIGMA) returns a rotationally
% symmetric Gaussian lowpass filter of size HSIZE with standard
% deviation SIGMA (positive). HSIZE can be a vector specifying the
% number of rows and columns in H or a scalar, in which case H is a
% square matrix.
% The default HSIZE is [3 3], the default SIGMA is 0.5.
%
% H = FSPECIAL('laplacian',ALPHA) returns a 3-by-3 filter
% approximating the shape of the two-dimensional Laplacian
% operator. The parameter ALPHA controls the shape of the
% Laplacian and must be in the range 0.0 to 1.0.
% The default ALPHA is 0.2.
%
% H = FSPECIAL('log',HSIZE,SIGMA) returns a rotationally symmetric
% Laplacian of Gaussian filter of size HSIZE with standard deviation
% SIGMA (positive). HSIZE can be a vector specifying the number of rows
% and columns in H or a scalar, in which case H is a square matrix.
% The default HSIZE is [5 5], the default SIGMA is 0.5.
%
% H = FSPECIAL('motion',LEN,THETA) returns a filter to approximate, once
% convolved with an image, the linear motion of a camera by LEN pixels,
% with an angle of THETA degrees in a counter-clockwise direction. The
% filter becomes a vector for horizontal and vertical motions. The
% default LEN is 9, the default THETA is 0, which corresponds to a
% horizontal motion of 9 pixels.
%
% H = FSPECIAL('prewitt') returns 3-by-3 filter that emphasizes
% horizontal edges by approximating a vertical gradient. If you need to
% emphasize vertical edges, transpose the filter H: H'.
%
% [1 1 1;0 0 0;-1 -1 -1].
%
% H = FSPECIAL('sobel') returns 3-by-3 filter that emphasizes
% horizontal edges utilizing the smoothing effect by approximating a
% vertical gradient. If you need to emphasize vertical edges, transpose
% the filter H: H'.
%
% [1 2 1;0 0 0;-1 -2 -1].
%
% H = FSPECIAL('unsharp',ALPHA) returns a 3-by-3 unsharp contrast
% enhancement filter. FSPECIAL creates the unsharp filter from the
% negative of the Laplacian filter with parameter ALPHA. ALPHA controls
% the shape of the Laplacian and must be in the range 0.0 to 1.0.
% The default ALPHA is 0.2.
%
% Class Support
% -------------
% H is of class double.
%
% Example
% -------
% I = imread('cameraman.tif');
% subplot(2,2,1);imshow(I);title('Original Image');
% H = fspecial('motion',20,45);
% MotionBlur = imfilter(I,H,'replicate');
% subplot(2,2,2);imshow(MotionBlur);title('Motion Blurred Image');
% H = fspecial('disk',10);
% blurred = imfilter(I,H,'replicate');
% subplot(2,2,3);imshow(blurred);title('Blurred Image');
% H = fspecial('unsharp');
% sharpened = imfilter(I,H,'replicate');
% subplot(2,2,4);imshow(sharpened);title('Sharpened Image');
%
% See also CONV2, EDGE, FILTER2, FSAMP2, FWIND1, FWIND2, IMFILTER.
% Copyright 1993-2003 The MathWorks, Inc.
% $Revision: 5.28.4.2 $ $Date: 2003/01/26 05:55:24 $
[type, p2, p3] = ParseInputs(varargin{:});
switch type
case 'average' % Smoothing filter
siz = p2;
h = ones(siz)/prod(siz);
case 'disk' % Disk filter
rad = p2;
crad = ceil(rad-0.5);
[x,y] = meshgrid(-crad:crad,-crad:crad);
maxxy = max(abs(x),abs(y));
minxy = min(abs(x),abs(y));
m1 = (rad^2 < (maxxy+0.5).^2 + (minxy-0.5).^2).*(minxy-0.5) + ...
(rad^2 >= (maxxy+0.5).^2 + (minxy-0.5).^2).* ...
sqrt(rad^2 - (maxxy + 0.5).^2);
m2 = (rad^2 > (maxxy-0.5).^2 + (minxy+0.5).^2).*(minxy+0.5) + ...
(rad^2 <= (maxxy-0.5).^2 + (minxy+0.5).^2).* ...
sqrt(rad^2 - (maxxy - 0.5).^2);
sgrid = (rad^2*(0.5*(asin(m2/rad) - asin(m1/rad)) + ...
0.25*(sin(2*asin(m2/rad)) - sin(2*asin(m1/rad)))) - ...
(maxxy-0.5).*(m2-m1) + (m1-minxy+0.5)) ...
.*((((rad^2 < (maxxy+0.5).^2 + (minxy+0.5).^2) & ...
(rad^2 > (maxxy-0.5).^2 + (minxy-0.5).^2)) | ...
((minxy==0)&(maxxy-0.5 < rad)&(maxxy+0.5>=rad))));
sgrid = sgrid + ((maxxy+0.5).^2 + (minxy+0.5).^2 < rad^2);
sgrid(crad+1,crad+1) = min(pi*rad^2,pi/2);
if ((crad>0) & (rad > crad-0.5) & (rad^2 < (crad-0.5)^2+0.25))
m1 = sqrt(rad^2 - (crad - 0.5).^2);
m1n = m1/rad;
sg0 = 2*(rad^2*(0.5*asin(m1n) + 0.25*sin(2*asin(m1n)))-m1*(crad-0.5));
sgrid(2*crad+1,crad+1) = sg0;
sgrid(crad+1,2*crad+1) = sg0;
sgrid(crad+1,1) = sg0;
sgrid(1,crad+1) = sg0;
sgrid(2*crad,crad+1) = sgrid(2*crad,crad+1) - sg0;
sgrid(crad+1,2*crad) = sgrid(crad+1,2*crad) - sg0;
sgrid(crad+1,2) = sgrid(crad+1,2) - sg0;
sgrid(2,crad+1) = sgrid(2,crad+1) - sg0;
end
sgrid(crad+1,crad+1) = min(sgrid(crad+1,crad+1),1);
h = sgrid/sum(sgrid(:));
case 'gaussian' % Gaussian filter
siz = (p2-1)/2;
std = p3;
[x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));
arg = -(x.*x + y.*y)/(2*std*std);
h = exp(arg);
h(h<eps*max(h(:))) = 0;
sumh = sum(h(:));
if sumh ~= 0,
h = h/sumh;
end;
case 'laplacian' % Laplacian filter
alpha = p2;
alpha = max(0,min(alpha,1));
h1 = alpha/(alpha+1); h2 = (1-alpha)/(alpha+1);
h = [h1 h2 h1;h2 -4/(alpha+1) h2;h1 h2 h1];
case 'log' % Laplacian of Gaussian
% first calculate Gaussian
siz = (p2-1)/2;
std2 = p3^2;
[x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));
arg = -(x.*x + y.*y)/(2*std2);
h = exp(arg);
h(h<eps*max(h(:))) = 0;
sumh = sum(h(:));
if sumh ~= 0,
h = h/sumh;
end;
% now calculate Laplacian
h1 = h.*(x.*x + y.*y - 2*std2)/(std2^2);
h = h1 - sum(h1(:))/prod(p2); % make the filter sum to zero
case 'motion' % Motion filter uses bilinear interpolation
len = max(1,p2);
half = (len-1)/2;% rotate half length around center
phi = mod(p3,180)/180*pi;
cosphi = cos(phi);
sinphi = sin(phi);
xsign = sign(cosphi);
linewdt = 1;
% define mesh for the half matrix, eps takes care of the right size
% for 0 & 90 rotation
sx = fix(half*cosphi + linewdt*xsign - len*eps);
sy = fix(half*sinphi + linewdt - len*eps);
[x y] = meshgrid([0:xsign:sx],[0:sy]);
% define shortest distance from a pixel to the rotated line
dist2line = (y*cosphi-x*sinphi);% distance perpendicular to the line
rad = sqrt(x.^2 + y.^2);
% find points beyond the line's end-point but within the line width
lastpix = find((rad >= half)&(abs(dist2line)<=linewdt));
%distance to the line's end-point parallel to the line
x2lastpix = half - abs((x(lastpix) + dist2line(lastpix)*sinphi)/cosphi);
dist2line(lastpix) = sqrt(dist2line(lastpix).^2 + x2lastpix.^2);
dist2line = linewdt + eps - abs(dist2line);
dist2line(dist2line<0) = 0;% zero out anything beyond line width
% unfold half-matrix to the full size
h = rot90(dist2line,2);
h(end+[1:end]-1,end+[1:end]-1) = dist2line;
h = h./(sum(h(:)) + eps*len*len);
if cosphi>0,
h = flipud(h);
end
case 'prewitt' % Prewitt filter
h = [1 1 1;0 0 0;-1 -1 -1];
case 'sobel' % Sobel filter
h = [1 2 1;0 0 0;-1 -2 -1];
case 'unsharp' % Unsharp filter
alpha = p2;
h = [0 0 0;0 1 0;0 0 0] - fspecial('laplacian',alpha);
end
%%%
%%% ParseInputs
%%%
function [type, p2, p3] = ParseInputs(varargin)
% default values
type = '';
p2 = [];
p3 = [];
% Check the number of input arguments.
% checknargin(1,3,nargin,mfilename);
% Determine filter type from the user supplied string.
type = varargin{1};
% type = checkstrs(type,{'gaussian','sobel','prewitt','laplacian','log',...
% 'average','unsharp','disk','motion'},mfilename,'TYPE',1);
% default values
switch type
case 'average'
p2 = [3 3]; % siz
case 'disk'
p2 = 5; % rad
case 'gaussian'
p2 = [3 3]; % siz
p3 = 0.5; % std
case {'laplacian', 'unsharp'}
p2 = 1/5; % alpha
case 'log'
p2 = [5 5]; % siz
p3 = 0.5; % std
case 'motion'
p2 = 9; % len
p3 = 0; % theta
end
switch nargin
case 1
% FSPECIAL('average')
% FSPECIAL('disk')
% FSPECIAL('gaussian')
% FSPECIAL('laplacian')
% FSPECIAL('log')
% FSPECIAL('motion')
% FSPECIAL('prewitt')
% FSPECIAL('sobel')
% FSPECIAL('unsharp')
% Nothing to do here; the default values have
% already been assigned.
case 2
% FSPECIAL('average',N)
% FSPECIAL('disk',RADIUS)
% FSPECIAL('gaussian',N)
% FSPECIAL('laplacian',ALPHA)
% FSPECIAL('log',N)
% FSPECIAL('motion',LEN)
% FSPECIAL('unsharp',ALPHA)
p2 = varargin{2};
switch type
case {'sobel','prewitt'}
msg = sprintf('%s: Too many arguments for this type of filter.', upper(mfilename));
eid = sprintf('Images:%s:tooManyArgsForThisFilter', mfilename);
error(eid,msg);
case {'laplacian','unsharp'}
checkinput(p2,{'double'},{'nonnegative','real',...
'nonempty','finite','scalar'},...
mfilename,'ALPHA',2);
if p2 > 1
msg = sprintf('%s: ALPHA should be less than or equal 1 and greater than 0.', upper(mfilename));
eid = sprintf('Images:%s:outOfRangeAlpha', mfilename);
error(eid,msg);
end
case {'disk','motion'}
checkinput(p2,{'double'},{'positive','finite','real','nonempty','scalar'},mfilename,'RADIUS or LEN',2);
case {'gaussian','log','average'}
checkinput(p2,{'double'},{'positive','finite','real','nonempty','integer'},mfilename,'HSIZE',2);
if prod(size(p2)) > 2
msg = 'HSIZE should have 1 or 2 elements.';
eid = sprintf('Images:%s:wrongSizeN', mfilename);
error(eid,msg);
elseif (prod(size(p2))==1)
p2 = [p2 p2];
end
end
case 3
% FSPECIAL('gaussian',N,SIGMA)
% FSPECIAL('log',N,SIGMA)
% FSPECIAL('motion',LEN,THETA)
p2 = varargin{2};
p3 = varargin{3};
switch type
case 'motion'
% checkinput(p2,{'double'},{'positive','finite','real','nonempty','scalar'},mfilename,'LEN',2);
% checkinput(p3,{'double'},{'real','nonempty','finite','scalar'},mfilename,'THETA',3);
case {'gaussian','log'}
% checkinput(p2,{'double'},{'positive','finite','real','nonempty','integer'},mfilename,'N',2);
% checkinput(p3,{'double'},{'positive','finite','real','nonempty','scalar'},mfilename,'SIGMA',3);
if prod(size(p2)) > 2
msg = sprintf('%s: size(N) should be less than or equal 2.', upper(mfilename));
eid = sprintf('Images:%s:wrongSizeN', mfilename);
error(eid,msg);
elseif (prod(size(p2))==1)
p2 = [p2 p2];
end
otherwise
msg = sprintf('%s: Too many arguments for this type of filter.', upper(mfilename));
eid = sprintf('Images:%s:tooManyArgsForThisFilter', mfilename);
error(eid,msg);
end
end