-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecommendations.py
212 lines (157 loc) · 5.47 KB
/
recommendations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from math import sqrt
# A dictionary of movie critics and their ratings of a small
# set of movies
critics={
'Lisa Rose':
{
'Lady in the Water': 2.5
, 'Snakes on a Plane': 3.5
, 'Just My Luck': 3.0
, 'Superman Returns': 3.5
, 'You, Me and Dupree': 2.5
, 'The Night Listener': 3.0
},
'Lisa Clone':
{
'Lady in the Water': 2.5
, 'Snakes on a Plane': 3.5
, 'Just My Luck': 3.0
, 'Superman Returns': 3.5
, 'You, Me and Dupree': 2.5
, 'The Night Listener': 3.0
},
'Gene Seymour':
{
'Lady in the Water': 3.0
, 'Snakes on a Plane': 3.5
, 'Just My Luck': 1.5
, 'Superman Returns': 5.0
, 'The Night Listener': 3.0
, 'You, Me and Dupree': 3.5
},
'Michael Phillips':
{
'Lady in the Water': 2.5
, 'Snakes on a Plane': 3.0
, 'Superman Returns': 3.5
, 'The Night Listener': 4.0
},
'Claudia Puig':
{
'Snakes on a Plane': 3.5
, 'Just My Luck': 3.0
, 'The Night Listener': 4.5
, 'Superman Returns': 4.0
, 'You, Me and Dupree': 2.5
},
'Mick LaSalle':
{
'Lady in the Water': 3.0
, 'Snakes on a Plane': 4.0
, 'Just My Luck': 2.0
, 'Superman Returns': 3.0
, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0
},
'Jack Matthews':
{
'Lady in the Water': 3.0
, 'Snakes on a Plane': 4.0
, 'The Night Listener': 3.0
, 'Superman Returns': 5.0
, 'You, Me and Dupree': 3.5
},
'Toby':
{
'Snakes on a Plane':4.5
, 'You, Me and Dupree':1.0
, 'Superman Returns':4.0
},
'Kenji':
{
'Batman Begins':4.5
}
}
def sim_distance(prefs, person1, person2):
similar_items = {}
for item in prefs[person1]:
if item in prefs[person2]:
similar_items[item]=1
#no ratings in common
if len(similar_items)==0: return 0;
# (a1 - b1)**2 + (a2 - b2)**2 + .. + (an - bn)**2
sum_of_squares = sum( [ pow( prefs[person1][item] - prefs[person2][item], 2 ) for item in similar_items ] )
return 1 /(1 + sqrt(sum_of_squares))
def sim_pearson(prefs, p1, p2):
similar_items = {}
for item in prefs[p1]:
if item in prefs[p2]:
similar_items[item]=1
n = len(similar_items)
if n==0: return 0
# adding all the ratings for similar items for p1
sum1 = sum( [ prefs[p1][it] for it in similar_items ] )
# adding all the ratings for similar items for p2
sum2 = sum( [ prefs[p2][it] for it in similar_items ] )
sum1Sq = sum( [ pow( prefs[p1][it], 2 ) for it in similar_items ] )
sum2Sq = sum( [ pow( prefs[p2][it], 2 ) for it in similar_items ] )
pSum=sum( [ prefs[p1][it]*prefs[p2][it] for it in similar_items ] )
num = pSum - ( sum1 * sum2 / n )
den = sqrt( (sum1Sq - pow(sum1, 2) / n ) * ( sum2Sq - pow(sum2, 2) / n ) )
if den==0: return 0
r=num/den
return r
def topMatches(prefs, person, n=5, similarity=sim_pearson):
scores = [ (similarity(prefs, person, other), other) for other in prefs if other != person ]
scores.sort()
scores.reverse()
return scores[0:n]
def getRecommendations(prefs, person, similarity=sim_pearson):
totals={}
simSums={}
for other in prefs:
if other==person: continue
sim=similarity(prefs, person, other)
if sim<=0: continue
for item in prefs[other]:
if item not in prefs[person] or prefs[person][item]==0:
#similarity*score
totals.setdefault(item, 0)
totals[item] += prefs[other][item]*sim
simSums.setdefault(item, 0)
simSums[item]+=sim
print totals.items()
rankings = [ (total/simSums[item], item) for item,total in totals.items() ]
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item, {})
result[item][person] = prefs[person][item]
return result;
def all_options(prefs):
all_movies = []
for person in prefs:
for item in prefs[person]:
all_movies.append(item)
return set(all_movies)
def sim_tanimoto(prefs, person, other):
#get all options
#for each person, mark 1 if he/she has seen it
all_movies = all_options(prefs)
matrix = {}
# tan_score = m11 / (m01 + m10 + m11)
similar_to_both = [ movie for movie in all_movies if (movie in prefs[person] and movie in prefs[other]) ]
only_a = [ movie for movie in all_movies if (movie in prefs[person] and movie not in prefs[other]) ]
only_b = [ movie for movie in all_movies if (movie not in prefs[person] and movie in prefs[other]) ]
print 'similar to both:' + str(len(similar_to_both))
print 'only A:' + str(len(only_a))
print 'only B:' + str(len(only_b))
simi = float(len(similar_to_both))
a = float(len(only_a))
b = float(len(only_b))
tan_score = simi / ( a + b + simi)
return tan_score