-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrhythmCheck.py
executable file
·135 lines (113 loc) · 4.13 KB
/
rhythmCheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
# import more_data as data
####### test vs averaged training vectors mahabolnis distance function ########
# finds m_distance between testTiming and realTiming(typically vector of averages)
# uses covariance matrix S in calculation
# returns boolean if distance is below a certain threshold
def checkTimings(testTiming, realTiming, S, threshold=None):
# convert ms data to seconds before computing m_distance
np_test = .01 * np.array(testTiming)
np_real = .01 * np.array(realTiming)
n = len(testTiming)
# check if S has inverse
if np.linalg.det(S) != 0:
S = np.linalg.inv(S)
# calculate mahabolonis distance
mh_distance = np.dot(np.dot(np.transpose(np_test - np_real), S),(np_test - np_real)) ** 0.5
print "MH_Distance: " + str(mh_distance)
# currently using static threshold, may need to make this dynamic but not sure right now
if (threshold == None):
threshold = (n**1.7)*.1
if mh_distance < threshold:
return True
return False
####### K nearest mahabolnis distance function ########
# finds k closest m_distances between testTiming and each vector in realTimings
# uses covariance matrix S in computation of m_distances
# returns true if all of k closest m_distances is below threshold
def checkTimingsK(testTiming, realTimings, S, k, threshold=None):
np_test = .01 * np.array(testTiming)
n = len(testTiming)
# check if S has inverse
if np.linalg.det(S) != 0:
S = np.linalg.inv(S)
# Find k closest vectors in training data
k_closest_distances = [100000] * k
for vector in realTimings:
np_vector = .01 * np.array(vector)
mh_distance = np.dot(np.dot(np.transpose(np_test - np_vector), S),(np_test - np_vector)) ** 0.5
print "MH_Distance: " + str(mh_distance)
if max(k_closest_distances) > mh_distance:
k_closest_distances.remove(max(k_closest_distances))
k_closest_distances.append(mh_distance)
print "K closest Distance: " + str(k_closest_distances)
k_furthest_distance = max(k_closest_distances)
if (threshold == None):
threshold = (n**1.7)*0.1
if k_furthest_distance < threshold:
return True
return False
# function to calculate the manhatan distance
#
def manhattan_distance(testVector, realVector):
distance = 0
return distance
# takes in initial timing data
# returns array with mean times of keystrokes
def getMedianTiming(timings):
elements = len(timings)
n = len(timings[0])
out = np.zeros(n)
for data in timings:
out += np.array(data)
out /= elements
return out.tolist()
# takes in initial timing data
# computes covariance matrix and returns it
def computeCovarianceMatrix(timings):
np_temp = .01 * np.array(timings)
covariance_matrix = np.cov(np_temp.T)
return covariance_matrix
def computeThreshold(timings, S):
mh_distance_sum = 0
np_timings = np.array([.01 * np.array(x) for x in timings])
# check if S has inverse
if np.linalg.det(S) != 0:
S = np.linalg.inv(S)
# compute mean of distances between all learning vector pairings
for x in np_timings:
for y in np_timings:
if (x != y).any():
mh_distance = np.dot(np.dot(np.transpose(x - y), S),(x - y)) ** 0.5
mh_distance_sum += mh_distance
return mh_distance_sum / (len(timings)*(len(timings)-1))
# take in data for key strokes
# return an array of vectors that contain the down times of the keystrokes
def textToVectors(data):
out_vectors = []
for vector in data:
out_vector = []
offset = len('"down":')
marker = vector.find('"down":')
while marker != -1:
end_marker = vector.find(',',marker+offset)
if end_marker == -1:
end_marker = vector.find('}', marker+offset)
out_vector.append(int(vector[marker+offset:end_marker]))
marker = vector.find('"down":', end_marker+1)
out_vectors.append(out_vector)
return out_vectors
# testing
# array1 = [1,10,15,20]
# timings = [[2,11,14,21],[2,11,15,21],[2,12,14,21]]
# S = compute_covariance_matrix(timings)
# array2 = get_median_timing(timings)
# checkTimings(array1,array2,S)
# tuan_data = textToVectors(data.tuan)[12:]
# print tuan_data
# tuan_mean = getMedianTiming(tuan_data)
# tuan_S = computeCovarianceMatrix(tuan_data)
# print tuan_mean
# print tuan_S
# print checkTimings(tuan_data[0],tuan_mean,tuan_S)
# print checkTimingsK(tuan_data[0],tuan_data,tuan_S,3)