-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroi_loader.py
564 lines (498 loc) · 18 KB
/
roi_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import logging
import re
import napari
import napari.layers
import numpy as np
import zarr
from fractal_tasks_core.ngff import load_NgffWellMeta
from magicgui.widgets import (
CheckBox,
ComboBox,
Container,
FileEdit,
PushButton,
Select,
)
from napari.qt.threading import thread_worker
from napari.utils.colormaps import Colormap
from napari_ome_zarr_navigator.ome_zarr_image import OMEZarrImage
from napari_ome_zarr_navigator.util import calculate_well_positions
from napari_ome_zarr_navigator.utils_roi_loader import (
NapariHandler,
read_table,
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class ROILoader(Container):
def __init__(
self,
viewer: napari.viewer.Viewer,
zarr_url: str = None,
extra_widgets=None,
):
self._viewer = viewer
self.setup_logging()
self.zarr_url = zarr_url
self.channel_dict = {}
self.channel_names_dict = {}
self.labels_dict = {}
# Translation to move position of ROIs loaded
self.translation = (0, 0)
self.layer_base_name = ""
self._roi_table_picker = ComboBox(label="ROI Table")
self._roi_picker = ComboBox(label="ROI")
self._channel_picker = Select(
label="Channels",
)
self._level_picker = ComboBox(label="Image Level")
self._label_picker = Select(
label="Labels",
)
self._feature_picker = Select(
label="Features",
)
self._remove_old_labels_box = CheckBox(
value=False, text="Remove existing labels"
)
self._run_button = PushButton(value=False, text="Load ROI")
self._ome_zarr_image: OMEZarrImage = None
self.image_changed = ImageEvent()
# Initialize possible choices
# Update selections & bind buttons
self.image_changed.connect(self.update_roi_table_choices)
self.image_changed.connect(self.update_available_image_attrs)
self._roi_table_picker.changed.connect(self.update_roi_selection)
self._run_button.clicked.connect(self.run)
widgets = [
self._roi_table_picker,
self._roi_picker,
self._channel_picker,
self._level_picker,
self._label_picker,
self._feature_picker,
self._remove_old_labels_box,
self._run_button,
]
if extra_widgets:
widgets = extra_widgets + widgets
super().__init__(widgets=widgets)
@property
def ome_zarr_image(self):
return self._ome_zarr_image
@ome_zarr_image.setter
def ome_zarr_image(self, value) -> OMEZarrImage:
if self._ome_zarr_image != value:
self._ome_zarr_image = value
self.image_changed.emit(self._ome_zarr_image)
def setup_logging(self):
for handler in logger.root.handlers[:]:
logging.root.removeHandler(handler)
# Create a custom handler for napari
napari_handler = NapariHandler()
napari_handler.setLevel(logging.INFO)
# Optionally, set a formatter for the handler
# formatter = logging.Formatter(
# '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
# )
# napari_handler.setFormatter(formatter)
logger.addHandler(napari_handler)
def update_roi_selection(self):
@thread_worker
def get_roi_choices():
try:
roi_table = read_table(
self.zarr_url, self._roi_table_picker.value
)
new_choices = list(roi_table.obs_names)
return new_choices
except zarr.errors.PathNotFoundError:
return [""]
if self.ome_zarr_image:
worker = get_roi_choices()
worker.returned.connect(self._apply_roi_choices_update)
worker.start()
else:
self._apply_roi_choices_update([""])
def _apply_roi_choices_update(self, roi_list):
"""
Update the list of available ROIs in the dropdown
"""
self._roi_picker.choices = roi_list
self._roi_picker._default_choices = roi_list
def update_roi_table_choices(self, event):
@thread_worker
def threaded_get_table_list(table_type: str = None, strict=False):
return self.ome_zarr_image.get_tables_list(
table_type=table_type,
strict=strict,
)
if self.ome_zarr_image:
worker = threaded_get_table_list(
table_type="ROIs",
strict=False,
)
worker.returned.connect(self._apply_roi_table_choices_update)
worker.start()
else:
self._apply_roi_table_choices_update([""])
def _apply_roi_table_choices_update(self, table_list):
"""
Update the list of available ROI tables in the dropdown menu
"""
self._roi_table_picker.choices = table_list
self._roi_table_picker._default_choices = table_list
def update_available_image_attrs(self, new_zarr_img):
if new_zarr_img:
channels = self.ome_zarr_image.get_channel_list()
levels = self.ome_zarr_image.get_pyramid_levels()
labels = self.ome_zarr_image.get_labels_list()
features = self.ome_zarr_image.get_tables_list(
table_type="feature_table"
)
self.set_available_image_attrs(channels, levels, labels, features)
else:
# If zarr image was set to None, reset all selectors
self.set_available_image_attrs([""], [""], [""], [""])
def set_available_image_attrs(self, channels, levels, labels, features):
self._channel_picker.choices = channels
self._channel_picker._default_choices = channels
# Set pyramid levels
self._level_picker.choices = levels
self._level_picker._default_choices = levels
# Initialize available label images
self._label_picker.choices = labels
self._label_picker._default_choices = labels
# Initialize available features
self._feature_picker.choices = features
self._feature_picker._default_choices = features
def run(self):
# TODO: Handle case of this function being slow: Threadworker?
roi_table = self._roi_table_picker.value
roi_name = self._roi_picker.value
level = self._level_picker.value
channels = self._channel_picker.value
labels = self._label_picker.value
features = self._feature_picker.value
if len(channels) < 1 and len(labels) < 1:
logger.info(
"No channel or labels selected. "
"Select the channels/labels you want to load"
)
return
blending = None
if self._remove_old_labels_box.value:
remove_existing_label_layers(self._viewer)
load_roi(
ome_zarr_image=self.ome_zarr_image,
viewer=self._viewer,
roi_table=roi_table,
roi_name=roi_name,
layer_base_name=self.layer_base_name,
channels=channels,
level=level,
labels=labels,
features=features,
translation=self.translation,
blending=blending,
)
class ROILoaderImage(ROILoader):
def __init__(self, viewer: napari.viewer.Viewer, zarr_url: str = None):
self._zarr_url_picker = FileEdit(label="Zarr URL", mode="d")
super().__init__(
viewer=viewer,
extra_widgets=[
self._zarr_url_picker,
],
)
self._zarr_url_picker.changed.connect(self.update_image_selection)
if zarr_url:
self._zarr_url_picker.value = zarr_url
def update_image_selection(self):
self.zarr_url = self._zarr_url_picker.value
try:
self.ome_zarr_image = OMEZarrImage(self.zarr_url)
except ValueError:
self.ome_zarr_image = None
class ROILoaderPlate(ROILoader):
def __init__(
self,
viewer: napari.viewer.Viewer,
plate_url: str,
row: str,
col: str,
image_browser,
is_plate: bool,
):
self._zarr_picker = ComboBox(label="Image")
self.plate_url = plate_url.rstrip("/")
self.row = row
self.col = col
self.image_browser = image_browser
super().__init__(
viewer=viewer,
extra_widgets=[
self._zarr_picker,
],
)
self.layer_base_name = f"{row}{col}_{self.layer_base_name}"
self._zarr_picker.changed.connect(self.update_image_selection)
zarr_images = self.get_available_ome_zarr_images()
self._zarr_picker.choices = zarr_images
self._zarr_picker._default_choices = zarr_images
self._run_button.clicked.connect(self._update_defaults)
# Calculate base translation for a given well
self.translation, _ = calculate_well_positions(
plate_url=plate_url, row=row, col=col, is_plate=is_plate
)
# # Handle defaults for plate loading
# if "well_ROI_table" in self._roi_table_picker.choices:
# self._roi_table_picker.value = "well_ROI_table"
def get_available_ome_zarr_images(self):
well_url = f"{self.plate_url}/{self.row}/{self.col}"
well_meta = load_NgffWellMeta(well_url)
return [image.path for image in well_meta.well.images]
def update_image_selection(self):
self.zarr_url = (
f"{self.plate_url}/{self.row}/{self.col}/{self._zarr_picker.value}"
)
try:
self.ome_zarr_image = OMEZarrImage(self.zarr_url)
except ValueError:
self.ome_zarr_image = None
def _update_defaults(self):
"Updates Image Browser default when ROIs are loaded"
self.image_browser.update_defaults(
zarr_image_subgroup=self._zarr_picker.value,
roi_table=self._roi_table_picker.value,
roi_name=self._roi_picker.value,
channels=self._channel_picker.value,
level=self._level_picker.value,
labels=self._label_picker.value,
features=self._feature_picker.value,
remove_old_labels=self._remove_old_labels_box.value,
)
class ImageEvent:
def __init__(self):
self.handlers = []
def connect(self, handler):
self.handlers.append(handler)
def emit(self, *args, **kwargs):
for handler in self.handlers:
handler(*args, **kwargs)
def load_roi(
ome_zarr_image: OMEZarrImage,
viewer,
roi_table: str,
roi_name: str,
layer_base_name: str,
channels: list = None,
level: str = "0",
labels: list = None,
features: list = None,
translation=(0, 0),
blending=None,
):
"""
Load images, labels & tables of a given ROI & add to viewer
Args:
ome_zarr_image: OME-Zarr object to be loaded
viewer: napari viewer object
roi_table: Name of the ROI table to load a ROI from
(e.g. "well_ROI_table")
roi_name: Name of the ROI within the roi_table to load
layer_base_name: Base name for the layers to be added
channels: List of intensity channels to load
level: Resolution level to load
labels: List of labels to load
translation: Translation to apply to all loaded ROIs (typically the
translation to shift it to the correct well in a plate setting)
blending: Blending for the first intensity image to be used
"""
# Get translation within the larger image based on the ROI table
label_layers = {}
roi_df = ome_zarr_image.read_table(roi_table).to_df()
roi_translation = (
translation[0] + roi_df.loc[roi_name, "y_micrometer"],
translation[1] + roi_df.loc[roi_name, "x_micrometer"],
)
# Set layer names
if roi_df.shape[0] == 1:
layer_base_name = layer_base_name
else:
layer_base_name = f"{layer_base_name}{roi_name}_"
# Load intensity images
if channels:
for channel in channels:
add_intensity_roi(
ome_zarr_image,
viewer,
channel,
roi_table,
roi_name,
level,
blending,
translate=roi_translation,
layer_name=f"{layer_base_name}{channel}",
)
blending = "additive"
# Load labels
# TODO: handle case of no intensity image being present =>
# level choice for labels?
for label in labels:
label_roi, scale_label = ome_zarr_image.load_label_roi(
roi_table=roi_table,
roi_name=roi_name,
label=label,
level_path_img=level,
)
layer_name = f"{layer_base_name}{label}"
if layer_name in viewer.layers:
logger.info(f"{layer_name} is already loaded")
label_layers[label] = viewer.layers[layer_name]
else:
label_layers[label] = viewer.add_labels(
label_roi,
scale=scale_label,
name=layer_name,
translate=roi_translation,
)
# Load features
for table_name in features:
# FIXME: Check if no label type or no match
label_layer = find_matching_label_layer(
ome_zarr_image, table_name, label_layers
)
add_feature_table_to_layer(
ome_zarr_image,
table_name,
label_layer,
roi_name,
)
def add_intensity_roi(
ome_zarr_image: OMEZarrImage,
viewer,
channel: str,
roi_table: str,
roi_name: str,
level: str,
blending: str,
translate: tuple[float, float],
layer_name: str = "",
):
img_roi, scale_img = ome_zarr_image.load_intensity_roi(
roi_table=roi_table,
roi_name=roi_name,
channel=channel,
level_path=level,
)
if not np.any(img_roi):
return
# Get channel omero metadata
omero = ome_zarr_image.get_omero_metadata(channel)
try:
# Colormap creation needs to have this black initial color for
# background
colormap = Colormap(
["#000000", f"#{omero.color}"],
name=omero.color,
)
except AttributeError:
colormap = None
try:
rescaling = (
omero.window.start,
omero.window.end,
)
except AttributeError:
rescaling = None
if layer_name in viewer.layers:
logger.info(f"{layer_name} is already loaded")
else:
viewer.add_image(
img_roi,
scale=scale_img,
blending=blending,
contrast_limits=rescaling,
colormap=colormap,
name=layer_name,
translate=translate,
)
# TODO: Optionally return some values as well? e.g. if info is needed
# by label loading
def find_matching_label_layer(ome_zarr_image, table_name, label_layers: list):
"""
Finds the matching label layer for a feature table
"""
table_attrs = ome_zarr_image.get_table_attrs(table_name)
try:
target_label_name = table_attrs["region"]["path"].split("/")[-1]
except KeyError:
target_label_name = list(label_layers.keys())[0]
logger.info(
f"Table {table_name} did not have region metadata to match"
"it to the correct label image. Attaching the features to the"
f"first selected label layer ({target_label_name})"
)
if target_label_name not in label_layers:
target_label_name = list(label_layers.keys())[0]
logger.info(
f"The label {target_label_name} that {table_name} would be "
"matched to where not loaded. Attaching the features to the"
f"first selected label layer ({target_label_name})"
)
return label_layers[target_label_name]
def add_feature_table_to_layer(
ome_zarr_image, feature_table, label_layer, roi_name
):
# FIXME: Add case where label layer already contains some columns
feature_ad = ome_zarr_image.read_table(
table_name=feature_table,
)
# Cast to numpy array in case the data is lazily loaded as dask
labels_current_layer = np.unique(np.array(label_layer.data))[1:]
if "label" in feature_ad.obs:
shared_labels = list(
set(feature_ad.obs["label"].astype(int))
& set(labels_current_layer)
)
features_roi = feature_ad[
feature_ad.obs["label"].astype(int).isin(shared_labels)
]
features_df = features_roi.to_df()
# Drop duplicate columns
features_df = features_df.loc[
:, ~features_df.columns.duplicated()
].copy()
features_df["label"] = feature_ad.obs["label"].astype(int)
features_df["roi_id"] = f"{ome_zarr_image.zarr_url}:ROI_{roi_name}"
features_df.set_index("label", inplace=True, drop=False)
# Handle "label" in anndata.obs.index instead (based on ngio)
elif feature_ad.obs.index.name == "label":
features_df = feature_ad.to_df()
features_df.index = features_df.index.astype(int)
features_df = features_df.loc[
features_df.index.isin(labels_current_layer)
]
features_df = features_df.reset_index()
# Drop duplicate columns
features_df = features_df.loc[
:, ~features_df.columns.duplicated()
].copy()
features_df["roi_id"] = f"{ome_zarr_image.zarr_url}:ROI_{roi_name}"
else:
logger.info(
f"Table {feature_table} does not have a label obs "
"column, can't be loaded as features for the "
f"layer {label_layer}"
)
return
# To display correct
features_df["index"] = features_df["label"]
label_layer.features = features_df
def remove_existing_label_layers(viewer):
for layer in viewer.layers:
# FIXME: Generalize well name catching
if type(layer) == napari.layers.Labels and re.match(
r"[A-Z][a-z]*\d+_*", layer.name
):
viewer.layers.remove(layer)