-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhandle.cpp
230 lines (196 loc) · 8.2 KB
/
handle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright 2016 The Fuchsia Authors
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <object/handle.h>
#include <object/dispatcher.h>
#include <fbl/arena.h>
#include <fbl/mutex.h>
#include <lib/counters.h>
#include <pow2.h>
namespace {
// The number of outstanding (live) handles in the arena.
constexpr size_t kMaxHandleCount = 256 * 1024u;
// Warning level: high_handle_count() is called when
// there are this many outstanding handles.
constexpr size_t kHighHandleCount = (kMaxHandleCount * 7) / 8;
KCOUNTER(handle_count_made, "kernel.handles.made");
KCOUNTER(handle_count_duped, "kernel.handles.duped");
KCOUNTER(handle_count_live, "kernel.handles.live");
KCOUNTER(handle_count_max_live, "kernel.handles.max_live");
// Masks for building a Handle's base_value, which ProcessDispatcher
// uses to create zx_handle_t values.
//
// base_value bit fields:
// [31..30]: Must be zero
// [29..kHandleGenerationShift]: Generation number
// Masked by kHandleGenerationMask
// [kHandleGenerationShift-1..0]: Index into handle_arena
// Masked by kHandleIndexMask
constexpr uint32_t kHandleIndexMask = kMaxHandleCount - 1;
static_assert((kHandleIndexMask & kMaxHandleCount) == 0,
"kMaxHandleCount must be a power of 2");
constexpr uint32_t kHandleGenerationMask = ~kHandleIndexMask & ~(3 << 30);
constexpr uint32_t kHandleGenerationShift = log2_uint_floor(kMaxHandleCount);
static_assert(((3 << (kHandleGenerationShift - 1)) & kHandleGenerationMask) ==
1 << kHandleGenerationShift,
"Shift is wrong");
static_assert((kHandleGenerationMask >> kHandleGenerationShift) >= 255,
"Not enough room for a useful generation count");
static_assert(((3 << 30) ^ kHandleGenerationMask ^ kHandleIndexMask) ==
0xffffffffu,
"Masks do not agree");
} // namespace
fbl::Arena Handle::arena_;
void Handle::Init() TA_NO_THREAD_SAFETY_ANALYSIS {
arena_.Init("handles", sizeof(Handle), kMaxHandleCount);
}
void Handle::set_process_id(zx_koid_t pid) {
process_id_.store(pid, fbl::memory_order_relaxed);
dispatcher_->set_owner(pid);
}
// Returns a new |base_value| based on the value stored in the free
// arena slot pointed to by |addr|. The new value will be different
// from the last |base_value| used by this slot.
uint32_t Handle::GetNewBaseValue(void* addr) TA_REQ(ArenaLock::Get()) {
// Get the index of this slot within the arena.
uint32_t handle_index = HandleToIndex(reinterpret_cast<Handle*>(addr));
DEBUG_ASSERT((handle_index & ~kHandleIndexMask) == 0);
// Check the free memory for a stashed base_value.
uint32_t v = *reinterpret_cast<uint32_t*>(addr);
uint32_t old_gen = 0;
if (v != 0) {
// This slot has been used before.
DEBUG_ASSERT((v & kHandleIndexMask) == handle_index);
old_gen = (v & kHandleGenerationMask) >> kHandleGenerationShift;
}
uint32_t new_gen =
(((old_gen + 1) << kHandleGenerationShift) & kHandleGenerationMask);
return (handle_index | new_gen);
}
// Allocate space for a Handle from the arena, but don't instantiate the
// object. |base_value| gets the value for Handle::base_value_. |what|
// says whether this is allocation or duplication, for the error message.
void* Handle::Alloc(const fbl::RefPtr<Dispatcher>& dispatcher,
const char* what, uint32_t* base_value) {
size_t outstanding_handles;
{
Guard<fbl::Mutex> guard{ArenaLock::Get()};
void* addr = arena_.Alloc();
outstanding_handles = arena_.DiagnosticCount();
if (likely(addr)) {
if (outstanding_handles > kHighHandleCount) {
// TODO: Avoid calling this for every handle after
// kHighHandleCount; printfs are slow and we're
// holding the mutex.
printf("WARNING: High handle count: %zu handles\n",
outstanding_handles);
}
dispatcher->increment_handle_count();
*base_value = GetNewBaseValue(addr);
return addr;
}
}
printf("WARNING: Could not allocate %s handle (%zu outstanding)\n",
what, outstanding_handles);
return nullptr;
}
HandleOwner Handle::Make(fbl::RefPtr<Dispatcher> dispatcher,
zx_rights_t rights) {
uint32_t base_value;
void* addr = Alloc(dispatcher, "new", &base_value);
if (unlikely(!addr))
return nullptr;
kcounter_add(handle_count_made, 1);
kcounter_add(handle_count_live, 1);
kcounter_max_counter(handle_count_max_live, handle_count_live);
return HandleOwner(new (addr) Handle(ktl::move(dispatcher),
rights, base_value));
}
// Called only by Make.
Handle::Handle(fbl::RefPtr<Dispatcher> dispatcher, zx_rights_t rights,
uint32_t base_value)
: process_id_(0u),
dispatcher_(ktl::move(dispatcher)),
rights_(rights),
base_value_(base_value) {
}
HandleOwner Handle::Dup(Handle* source, zx_rights_t rights) {
uint32_t base_value;
void* addr = Alloc(source->dispatcher(), "duplicate", &base_value);
if (unlikely(!addr))
return nullptr;
kcounter_add(handle_count_duped, 1);
kcounter_add(handle_count_live, 1);
kcounter_max_counter(handle_count_max_live, handle_count_live);
return HandleOwner(new (addr) Handle(source, rights, base_value));
}
// Called only by Dup.
Handle::Handle(Handle* rhs, zx_rights_t rights, uint32_t base_value)
: process_id_(rhs->process_id()),
dispatcher_(rhs->dispatcher_),
rights_(rights),
base_value_(base_value) {
}
// Destroys, but does not free, the Handle, and fixes up its memory to protect
// against stale pointers to it. Also stashes the Handle's base_value for reuse
// the next time this slot is allocated.
void Handle::TearDown() TA_EXCL(ArenaLock::Get()) {
uint32_t old_base_value = base_value();
// Calling the handle dtor can cause many things to happen, so it is
// important to call it outside the lock.
this->~Handle();
// There may be stale pointers to this slot. Zero out most of its fields
// to ensure that the Handle does not appear to belong to any process
// or point to any Dispatcher.
memset(this, 0, sizeof(*this));
// Hold onto the base_value for the next user of this slot, stashing
// it at the beginning of the free slot.
*reinterpret_cast<uint32_t*>(this) = old_base_value;
// Double-check that the process_id field is zero, ensuring that
// no process can refer to this slot while it's free. This isn't
// completely legal since |handle| points to unconstructed memory,
// but it should be safe enough for an assertion.
DEBUG_ASSERT(process_id() == 0);
}
void Handle::Delete() {
fbl::RefPtr<Dispatcher> disp = dispatcher();
if (disp->is_waitable())
disp->Cancel(this);
TearDown();
bool zero_handles = false;
{
Guard<fbl::Mutex> guard{ArenaLock::Get()};
zero_handles = disp->decrement_handle_count();
arena_.Free(this);
}
if (zero_handles)
disp->on_zero_handles();
// If |disp| is the last reference then the dispatcher object
// gets destroyed here.
kcounter_add(handle_count_live, -1);
}
Handle* Handle::FromU32(uint32_t value) TA_NO_THREAD_SAFETY_ANALYSIS {
uintptr_t handle_addr = IndexToHandle(value & kHandleIndexMask);
{
Guard<fbl::Mutex> guard{ArenaLock::Get()};
if (unlikely(!arena_.in_range(handle_addr)))
return nullptr;
}
auto handle = reinterpret_cast<Handle*>(handle_addr);
return likely(handle->base_value() == value) ? handle : nullptr;
}
uint32_t Handle::Count(const fbl::RefPtr<const Dispatcher>& dispatcher) {
// Handle::ArenaLock also guards Dispatcher::handle_count_.
Guard<fbl::Mutex> guard{ArenaLock::Get()};
return dispatcher->current_handle_count();
}
size_t Handle::diagnostics::OutstandingHandles() {
Guard<fbl::Mutex> guard{ArenaLock::Get()};
return arena_.DiagnosticCount();
}
void Handle::diagnostics::DumpTableInfo() {
Guard<fbl::Mutex> guard{ArenaLock::Get()};
arena_.Dump();
}