-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattentions.py
62 lines (52 loc) · 2.16 KB
/
attentions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
import fvcore.nn.weight_init as weight_init
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
nn.ReLU(),
nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False))
self.sigmoid = nn.Sigmoid()
# init
for layer in self.fc.modules():
if isinstance(layer, nn.Conv2d):
weight_init.c2_msra_fill(layer)
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return x * self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
# init
weight_init.c2_msra_fill(self.conv1)
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avg_out, max_out], dim=1)
out = self.conv1(out)
return x * self.sigmoid(out)
class CBAM(nn.Module):
"""
Convolutional Block Attention Module.
code is modified from https://github.com/luuuyi/CBAM.PyTorch and
https://github.com/Jongchan/attention-module
It will initialize when it's created.
"""
def __init__(self, in_channels, reduction_ratio=16, use_spatial=True):
super(CBAM, self).__init__()
self.channel_attention_module = ChannelAttention(in_channels, reduction_ratio)
self.use_spatial = use_spatial
if use_spatial:
self.spatial_attention_module = SpatialAttention()
def forward(self, x):
x = self.channel_attention_module(x)
if self.use_spatial:
x = self.spatial_attention_module(x)
return x