-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProject Selector.py
87 lines (77 loc) · 1.47 KB
/
Project Selector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import random
orchestration_tools = [
"Prefect",
"Flyte",
"Airflow",
"Metaflow"
]
frameworks = [
"PyTorch",
"Keras",
"Scikit Learn",
"XGBoost",
"H2O",
"FastAI",
"Apache Spark"
]
servers = [
"Torch Serve",
"FastAPI",
"Flask",
"Django",
"BentoML",
"TFServing",
"Streamlit",
"Feast",
"ONNX Runtime",
"Kubeflow",
"Seldon"
]
monitors = [
"Prometheus + Grafana",
"InfluxDB",
"Netdata",
"Evidently",
"Healthchecks",
"MLFlow",
"Metabase",
"ELK Stack",
"Zappix"
]
explainers = [
"Apache Superset",
"Pandas + Jupyter",
]
wildcards = [
"Dask for distributed execution",
"Huggingface API",
"SpaCy for NLP",
"Ultralytics for Image Processing",
"Horovod for distributed training (if applicable)",
"Mindsdb for data store enrichment",
"Shap for model analysis"
]
datatools = [
"PostgresQL",
"MySQL",
"SQL Server",
"SQLite"
"EdgeDB",
"SurrealDB",
"Firebase",
"DVC",
"Memgraph",
"Dgraph",
"ArangoDB",
"Neo4j",
]
print(f"""
your task is to create a data project using:
Orchestration: {random.choice(orchestration_tools)}
Framework: {random.choice(frameworks)}
Server: {random.choice(servers)}
Monitor: {random.choice(monitors)}
Data storage: {random.choice(datatools)}
Data Analysis: {random.choice(explainers)}
Wildcard: {random.choice(wildcards)}
""")