-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexamples.py
67 lines (46 loc) · 2.16 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
from xrlbench.explainers import Explainer
from xrlbench.evaluator import Evaluator
from xrlbench.environments import Environment
# Tabular数据测试
def tabular_input_test(environment, method, metric, k=3):
environment = Environment(environment_name=environment)
df = environment.get_dataset(generate=False)
df_sample = df.sample(n=5000, random_state=42)
action_sample = df_sample['action']
state_sample = df_sample.drop(['action', 'reward'], axis=1)
if method == "tabularShap":
explainer = Explainer(method=method, state=state_sample, action=action_sample)
else:
explainer = Explainer(method=method, state=state_sample, action=action_sample, model=environment.model)
importance = explainer.explain()
evaluator = Evaluator(metric=metric, environment=environment)
if metric == "RIS":
performance = evaluator.evaluate(state_sample, action_sample, importance, explainer=explainer)
else:
performance = evaluator.evaluate(state_sample, action_sample, importance, k=k)
return performance
# Image数据测试
def image_input_test(environment, method, metric, k=50):
environment = Environment(environment_name=environment)
dataset = environment.get_dataset(generate=False, data_format="h5")
explainer = Explainer(method=method, state=dataset.observations, action=dataset.actions,
model=environment.model)
importance = explainer.explain()
evaluator = Evaluator(metric=metric, environment=environment)
if metric == "RIS":
performance = evaluator.evaluate(dataset.observations, dataset.actions, importance, explainer=explainer)
else:
performance = evaluator.evaluate(dataset.observations, dataset.actions, importance, k=k)
return performance
if __name__ == "__main__":
# Tabular数据测试
environment = "lunarLander"
method = "tabularShap"
metric = "AIM"
performance = tabular_input_test(environment, method, metric, k=3)
# Image数据测试
environment = "breakOut"
method = "imageDeepShap"
metric = "imageAIM"
performance = image_input_test(environment, method, metric, k=50)