forked from justinhj/astar-algorithm-cpp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path8puzzle.cpp
executable file
·807 lines (607 loc) · 15 KB
/
8puzzle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// STL A* Search implementation
// (C)2001 Justin Heyes-Jones
//
// This uses my A* code to solve the 8-puzzle
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <stdio.h>
#include <assert.h>
#include <new>
#include <ctype.h>
using namespace std;
// Configuration
#define NUM_TIMES_TO_RUN_SEARCH 1
#define DISPLAY_SOLUTION_FORWARDS 1
#define DISPLAY_SOLUTION_BACKWARDS 0
#define DISPLAY_SOLUTION_INFO 1
#define DEBUG_LISTS 0
// AStar search class
#include "stlastar.h" // See header for copyright and usage information
// Global data
#define BOARD_WIDTH (3)
#define BOARD_HEIGHT (3)
#define GM_TILE (-1)
#define GM_SPACE (0)
#define GM_OFF_BOARD (1)
// Definitions
// To use the search class you must define the following calls...
// Data
// Your own state space information
// Functions
// (Optional) Constructor.
// Nodes are created by the user, so whether you use a
// constructor with parameters as below, or just set the object up after the
// constructor, is up to you.
//
// (Optional) Destructor.
// The destructor will be called if you create one. You
// can rely on the default constructor unless you dynamically allocate something in
// your data
//
// float GoalDistanceEstimate( PuzzleState &nodeGoal );
// Return the estimated cost to goal from this node (pass reference to goal node)
//
// bool IsGoal( PuzzleState &nodeGoal );
// Return true if this node is the goal.
//
// bool GetSuccessors( AStarSearch<PuzzleState> *astarsearch );
// For each successor to this state call the AStarSearch's AddSuccessor call to
// add each one to the current search - return false if you are out of memory and the search
// will fail
//
// float GetCost( PuzzleState *successor );
// Return the cost moving from this state to the state of successor
//
// bool IsSameState( PuzzleState &rhs );
// Return true if the provided state is the same as this state
// Here the example is the 8-puzzle state ...
class PuzzleState
{
public:
// defs
typedef enum
{
TL_SPACE,
TL_1,
TL_2,
TL_3,
TL_4,
TL_5,
TL_6,
TL_7,
TL_8
} TILE;
// data
static TILE g_goal[ BOARD_WIDTH*BOARD_HEIGHT];
static TILE g_start[ BOARD_WIDTH*BOARD_HEIGHT];
// the tile data for the 8-puzzle
TILE tiles[ BOARD_WIDTH*BOARD_HEIGHT ];
// member functions
PuzzleState() {
memcpy( tiles, g_goal, sizeof( TILE ) * BOARD_WIDTH * BOARD_HEIGHT );
}
PuzzleState( TILE *param_tiles )
{
memcpy( tiles, param_tiles, sizeof( TILE ) * BOARD_WIDTH * BOARD_HEIGHT );
}
float GoalDistanceEstimate( PuzzleState &nodeGoal );
bool IsGoal( PuzzleState &nodeGoal );
bool GetSuccessors( AStarSearch<PuzzleState> *astarsearch, PuzzleState *parent_node );
float GetCost( PuzzleState &successor );
bool IsSameState( PuzzleState &rhs );
void PrintNodeInfo();
private:
// User stuff - Just add what you need to help you write the above functions...
void GetSpacePosition( PuzzleState *pn, int *rx, int *ry );
bool LegalMove( TILE *StartTiles, TILE *TargetTiles, int spx, int spy, int tx, int ty );
int GetMap( int x, int y, TILE *tiles );
};
// Goal state
PuzzleState::TILE PuzzleState::g_goal[] =
{
TL_1,
TL_2,
TL_3,
TL_8,
TL_SPACE,
TL_4,
TL_7,
TL_6,
TL_5,
};
// Some nice Start states
PuzzleState::TILE PuzzleState::g_start[] =
{
// Three example start states from Bratko's Prolog Programming for Artificial Intelligence
#if 1
// ex a - 4 steps
TL_1 ,
TL_3 ,
TL_4 ,
TL_8 ,
TL_SPACE ,
TL_2 ,
TL_7 ,
TL_6 ,
TL_5 ,
#elif 0
// ex b - 5 steps
TL_2 ,
TL_8 ,
TL_3 ,
TL_1 ,
TL_6 ,
TL_4 ,
TL_7 ,
TL_SPACE ,
TL_5 ,
#elif 0
// ex c - 18 steps
TL_2 ,
TL_1 ,
TL_6 ,
TL_4 ,
TL_SPACE ,
TL_8 ,
TL_7 ,
TL_5 ,
TL_3 ,
#elif 0
// nasty one - doesn't solve
TL_6 ,
TL_3 ,
TL_SPACE ,
TL_4 ,
TL_8 ,
TL_5 ,
TL_7 ,
TL_2 ,
TL_1 ,
#elif 0
// sent by email - does work though
TL_1 , TL_2 , TL_3 ,
TL_4 , TL_5 , TL_6 ,
TL_8 , TL_7 , TL_SPACE ,
// from http://www.cs.utexas.edu/users/novak/asg-8p.html
//Goal: Easy: Medium: Hard: Worst:
//1 2 3 1 3 4 2 8 1 2 8 1 5 6 7
//8 4 8 6 2 4 3 4 6 3 4 8
//7 6 5 7 5 7 6 5 7 5 3 2 1
#elif 0
// easy 5
TL_1 ,
TL_3 ,
TL_4 ,
TL_8 ,
TL_6 ,
TL_2 ,
TL_7 ,
TL_SPACE ,
TL_5 ,
#elif 0
// medium 9
TL_2 ,
TL_8 ,
TL_1 ,
TL_SPACE ,
TL_4 ,
TL_3 ,
TL_7 ,
TL_6 ,
TL_5 ,
#elif 0
// hard 12
TL_2 ,
TL_8 ,
TL_1 ,
TL_4 ,
TL_6 ,
TL_3 ,
TL_SPACE ,
TL_7 ,
TL_5 ,
#elif 0
// worst 30
TL_5 ,
TL_6 ,
TL_7 ,
TL_4 ,
TL_SPACE ,
TL_8 ,
TL_3 ,
TL_2 ,
TL_1 ,
#elif 0
// 123
// 784
// 65
// two move simple board
TL_1 ,
TL_2 ,
TL_3 ,
TL_7 ,
TL_8 ,
TL_4 ,
TL_SPACE ,
TL_6 ,
TL_5 ,
#elif 0
// a1 b2 c3 d4 e5 f6 g7 h8
//C3,Blank,H8,A1,G8,F6,E5,D4,B2
TL_3 ,
TL_SPACE ,
TL_8 ,
TL_1 ,
TL_8 ,
TL_6 ,
TL_5 ,
TL_4 ,
TL_2 ,
#endif
};
bool PuzzleState::IsSameState( PuzzleState &rhs )
{
for( int i=0; i<(BOARD_HEIGHT*BOARD_WIDTH); i++ )
{
if( tiles[i] != rhs.tiles[i] )
{
return false;
}
}
return true;
}
void PuzzleState::PrintNodeInfo()
{
char str[100];
sprintf( str, "%c %c %c\n%c %c %c\n%c %c %c\n",
tiles[0] + '0',
tiles[1] + '0',
tiles[2] + '0',
tiles[3] + '0',
tiles[4] + '0',
tiles[5] + '0',
tiles[6] + '0',
tiles[7] + '0',
tiles[8] + '0'
);
cout << str;
}
// Here's the heuristic function that estimates the distance from a PuzzleState
// to the Goal.
float PuzzleState::GoalDistanceEstimate( PuzzleState &nodeGoal )
{
// Nilsson's sequence score
int i, cx, cy, ax, ay, h = 0, s, t;
// given a tile this returns the tile that should be clockwise
TILE correct_follower_to[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
TL_SPACE, // always wrong
TL_2,
TL_3,
TL_4,
TL_5,
TL_6,
TL_7,
TL_8,
TL_1,
};
// given a table index returns the index of the tile that is clockwise to it 3*3 only
int clockwise_tile_of[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
1,
2, // 012
5, // 345
0, // 678
-1, // never called with center square
8,
3,
6,
7
};
int tile_x[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
/* TL_SPACE */ 1,
/* TL_1 */ 0,
/* TL_2 */ 1,
/* TL_3 */ 2,
/* TL_4 */ 2,
/* TL_5 */ 2,
/* TL_6 */ 1,
/* TL_7 */ 0,
/* TL_8 */ 0,
};
int tile_y[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
/* TL_SPACE */ 1,
/* TL_1 */ 0,
/* TL_2 */ 0,
/* TL_3 */ 0,
/* TL_4 */ 1,
/* TL_5 */ 2,
/* TL_6 */ 2,
/* TL_7 */ 2,
/* TL_8 */ 1,
};
s=0;
// score 1 point if centre is not correct
if( tiles[(BOARD_HEIGHT*BOARD_WIDTH)/2] != nodeGoal.tiles[(BOARD_HEIGHT*BOARD_WIDTH)/2] )
{
s = 1;
}
for( i=0; i<(BOARD_HEIGHT*BOARD_WIDTH); i++ )
{
// this loop adds up the totaldist element in h and
// the sequence score in s
// the space does not count
if( tiles[i] == TL_SPACE )
{
continue;
}
// get correct x and y of this tile
cx = tile_x[tiles[i]];
cy = tile_y[tiles[i]];
// get actual
ax = i % BOARD_WIDTH;
ay = i / BOARD_WIDTH;
// add manhatten distance to h
h += abs( cx-ax );
h += abs( cy-ay );
// no s score for center tile
if( (ax == (BOARD_WIDTH/2)) && (ay == (BOARD_HEIGHT/2)) )
{
continue;
}
// score 2 points if not followed by successor
if( correct_follower_to[ tiles[i] ] != tiles[ clockwise_tile_of[ i ] ] )
{
s += 2;
}
}
// mult by 3 and add to h
t = h + (3*s);
return (float) t;
}
bool PuzzleState::IsGoal( PuzzleState &nodeGoal )
{
return IsSameState( nodeGoal );
}
// Helper
// Return the x and y position of the space tile
void PuzzleState::GetSpacePosition( PuzzleState *pn, int *rx, int *ry )
{
int x,y;
for( y=0; y<BOARD_HEIGHT; y++ )
{
for( x=0; x<BOARD_WIDTH; x++ )
{
if( pn->tiles[(y*BOARD_WIDTH)+x] == TL_SPACE )
{
*rx = x;
*ry = y;
return;
}
}
}
assert( false && "Something went wrong. There's no space on the board" );
}
int PuzzleState::GetMap( int x, int y, TILE *tiles )
{
if( x < 0 ||
x >= BOARD_WIDTH ||
y < 0 ||
y >= BOARD_HEIGHT
)
return GM_OFF_BOARD;
if( tiles[(y*BOARD_WIDTH)+x] == TL_SPACE )
{
return GM_SPACE;
}
return GM_TILE;
}
// Given a node set of tiles and a set of tiles to move them into, do the move as if it was on a tile board
// note : returns false if the board wasn't changed, and simply returns the tiles as they were in the target
// spx and spy is the space position while tx and ty is the target move from position
bool PuzzleState::LegalMove( TILE *StartTiles, TILE *TargetTiles, int spx, int spy, int tx, int ty )
{
int t;
if( GetMap( spx, spy, StartTiles ) == GM_SPACE )
{
if( GetMap( tx, ty, StartTiles ) == GM_TILE )
{
// copy tiles
for( t=0; t<(BOARD_HEIGHT*BOARD_WIDTH); t++ )
{
TargetTiles[t] = StartTiles[t];
}
TargetTiles[ (ty*BOARD_WIDTH)+tx ] = StartTiles[ (spy*BOARD_WIDTH)+spx ];
TargetTiles[ (spy*BOARD_WIDTH)+spx ] = StartTiles[ (ty*BOARD_WIDTH)+tx ];
return true;
}
}
return false;
}
// This generates the successors to the given PuzzleState. It uses a helper function called
// AddSuccessor to give the successors to the AStar class. The A* specific initialisation
// is done for each node internally, so here you just set the state information that
// is specific to the application
bool PuzzleState::GetSuccessors( AStarSearch<PuzzleState> *astarsearch, PuzzleState *parent_node )
{
PuzzleState NewNode;
int sp_x,sp_y;
GetSpacePosition( this, &sp_x, &sp_y );
bool ret;
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x, sp_y-1 ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x, sp_y+1 ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x-1, sp_y ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x+1, sp_y ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
return true;
}
// given this node, what does it cost to move to successor. In the case
// of our map the answer is the map terrain value at this node since that is
// conceptually where we're moving
float PuzzleState::GetCost( PuzzleState &successor )
{
return 1.0f; // I love it when life is simple
}
// Main
int main( int argc, char *argv[] )
{
cout << "STL A* 8-puzzle solver implementation\n(C)2001 Justin Heyes-Jones\n";
bool bUserBoard = false;
if( argc > 1 )
{
char *userboard = argv[1];
int i = 0;
int c;
while( c = argv[1][i] )
{
if( isdigit( c ) )
{
int num = (c - '0');
PuzzleState::g_start[i] = static_cast<PuzzleState::TILE>(num);
}
i++;
}
}
// Create an instance of the search class...
AStarSearch<PuzzleState> astarsearch;
int NumTimesToSearch = NUM_TIMES_TO_RUN_SEARCH;
while( NumTimesToSearch-- )
{
// Create a start state
PuzzleState nodeStart( PuzzleState::g_start );
// Define the goal state
PuzzleState nodeEnd( PuzzleState::g_goal );
// Set Start and goal states
astarsearch.SetStartAndGoalStates( nodeStart, nodeEnd );
unsigned int SearchState;
unsigned int SearchSteps = 0;
do
{
SearchState = astarsearch.SearchStep();
#if DEBUG_LISTS
float f,g,h;
cout << "Search step " << SearchSteps << endl;
cout << "Open:\n";
PuzzleState *p = astarsearch.GetOpenListStart( f,g,h );
while( p )
{
((PuzzleState *)p)->PrintNodeInfo();
cout << "f: " << f << " g: " << g << " h: " << h << "\n\n";
p = astarsearch.GetOpenListNext( f,g,h );
}
cout << "Closed:\n";
p = astarsearch.GetClosedListStart( f,g,h );
while( p )
{
p->PrintNodeInfo();
cout << "f: " << f << " g: " << g << " h: " << h << "\n\n";
p = astarsearch.GetClosedListNext( f,g,h );
}
#endif
// Test cancel search
#if 0
int StepCount = astarsearch.GetStepCount();
if( StepCount == 10 )
{
astarsearch.CancelSearch();
}
#endif
SearchSteps++;
}
while( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_SEARCHING );
if( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_SUCCEEDED )
{
#if DISPLAY_SOLUTION_FORWARDS
cout << "Search found goal state\n";
#endif
PuzzleState *node = astarsearch.GetSolutionStart();
#if DISPLAY_SOLUTION_FORWARDS
cout << "Displaying solution\n";
#endif
int steps = 0;
#if DISPLAY_SOLUTION_FORWARDS
node->PrintNodeInfo();
cout << endl;
#endif
for( ;; )
{
node = astarsearch.GetSolutionNext();
if( !node )
{
break;
}
#if DISPLAY_SOLUTION_FORWARDS
node->PrintNodeInfo();
cout << endl;
#endif
steps ++;
};
#if DISPLAY_SOLUTION_FORWARDS
// todo move step count into main algorithm
cout << "Solution steps " << steps << endl;
#endif
////////////
node = astarsearch.GetSolutionEnd();
#if DISPLAY_SOLUTION_BACKWARDS
cout << "Displaying reverse solution\n";
#endif
steps = 0;
node->PrintNodeInfo();
cout << endl;
for( ;; )
{
node = astarsearch.GetSolutionPrev();
if( !node )
{
break;
}
#if DISPLAY_SOLUTION_BACKWARDS
node->PrintNodeInfo();
cout << endl;
#endif
steps ++;
};
#if DISPLAY_SOLUTION_BACKWARDS
cout << "Solution steps " << steps << endl;
#endif
//////////////
// Once you're done with the solution you can free the nodes up
astarsearch.FreeSolutionNodes();
}
else if( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_FAILED )
{
#if DISPLAY_SOLUTION_INFO
cout << "Search terminated. Did not find goal state\n";
#endif
}
else if( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_OUT_OF_MEMORY )
{
#if DISPLAY_SOLUTION_INFO
cout << "Search terminated. Out of memory\n";
#endif
}
// Display the number of loops the search went through
#if DISPLAY_SOLUTION_INFO
cout << "SearchSteps : " << astarsearch.GetStepCount() << endl;
#endif
}
return 0;
}