-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
1281 lines (1180 loc) · 50.1 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
; (function () {
// BigInt, a suite of routines for performing multiple-precision arithmetic in
// JavaScript.
//
// Copyright 1998-2005 David Shapiro.
//
// You may use, re-use, abuse,
// copy, and modify this code to your liking, but please keep this header.
// Thanks!
//
// Dave Shapiro
// IMPORTANT THING: Be sure to set maxDigits according to your precision
// needs. Use the setMaxDigits() function to do this. See comments below.
//
// Tweaked by Ian Bunning
// Alterations:
// Fix bug in function biFromHex(s) to allow
// parsing of strings of length != 0 (mod 4)
// Changes made by Dave Shapiro as of 12/30/2004:
//
// The BigInt() constructor doesn't take a string anymore. If you want to
// create a BigInt from a string, use biFromDecimal() for base-10
// representations, biFromHex() for base-16 representations, or
// biFromString() for base-2-to-36 representations.
//
// biFromArray() has been removed. Use biCopy() instead, passing a BigInt
// instead of an array.
//
// The BigInt() constructor now only constructs a zeroed-out array.
// Alternatively, if you pass <true>, it won't construct any array. See the
// biCopy() method for an example of this.
//
// Be sure to set maxDigits depending on your precision needs. The default
// zeroed-out array ZERO_ARRAY is constructed inside the setMaxDigits()
// function. So use this function to set the variable. DON'T JUST SET THE
// VALUE. USE THE FUNCTION.
//
// ZERO_ARRAY exists to hopefully speed up construction of BigInts(). By
// precalculating the zero array, we can just use slice(0) to make copies of
// it. Presumably this calls faster native code, as opposed to setting the
// elements one at a time. I have not done any timing tests to verify this
// claim.
// Max number = 10^16 - 2 = 9999999999999998;
// 2^53 = 9007199254740992;
var biRadixBase = 2;
var biRadixBits = 16;
var bitsPerDigit = biRadixBits;
var biRadix = 1 << 16; // = 2^16 = 65536
var biHalfRadix = biRadix >>> 1;
var biRadixSquared = biRadix * biRadix;
var maxDigitVal = biRadix - 1;
var maxInteger = 9999999999999998;
// maxDigits:
// Change this to accommodate your largest number size. Use setMaxDigits()
// to change it!
//
// In general, if you're working with numbers of size N bits, you'll need 2*N
// bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need
//
// 1024 * 2 / 16 = 128 digits of storage.
//
var maxDigits;
var ZERO_ARRAY;
var bigZero, bigOne;
function setMaxDigits(value) {
maxDigits = value;
ZERO_ARRAY = new Array(maxDigits);
for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
bigZero = new BigInt();
bigOne = new BigInt();
bigOne.digits[0] = 1;
}
setMaxDigits(20);
// The maximum number of digits in base 10 you can convert to an
// integer without JavaScript throwing up on you.
var dpl10 = 15;
// lr10 = 10 ^ dpl10
var lr10 = biFromNumber(1000000000000000);
function BigInt(flag) {
if (typeof flag == "boolean" && flag == true) {
this.digits = null;
}
else {
this.digits = ZERO_ARRAY.slice(0);
}
this.isNeg = false;
}
function biFromDecimal(s) {
var isNeg = s.charAt(0) == '-';
var i = isNeg ? 1 : 0;
var result;
// Skip leading zeros.
while (i < s.length && s.charAt(i) == '0') ++i;
if (i == s.length) {
result = new BigInt();
}
else {
var digitCount = s.length - i;
var fgl = digitCount % dpl10;
if (fgl == 0) fgl = dpl10;
result = biFromNumber(Number(s.substr(i, fgl)));
i += fgl;
while (i < s.length) {
result = biAdd(biMultiply(result, lr10),
biFromNumber(Number(s.substr(i, dpl10))));
i += dpl10;
}
result.isNeg = isNeg;
}
return result;
}
function biCopy(bi) {
var result = new BigInt(true);
result.digits = bi.digits.slice(0);
result.isNeg = bi.isNeg;
return result;
}
function biFromNumber(i) {
var result = new BigInt();
result.isNeg = i < 0;
i = Math.abs(i);
var j = 0;
while (i > 0) {
result.digits[j++] = i & maxDigitVal;
i >>= biRadixBits;
}
return result;
}
function reverseStr(s) {
var result = "";
for (var i = s.length - 1; i > -1; --i) {
result += s.charAt(i);
}
return result;
}
var hexatrigesimalToChar = new Array(
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y', 'z'
);
function biToString(x, radix)
// 2 <= radix <= 36
{
var b = new BigInt();
b.digits[0] = radix;
var qr = biDivideModulo(x, b);
var result = hexatrigesimalToChar[qr[1].digits[0]];
while (biCompare(qr[0], bigZero) == 1) {
qr = biDivideModulo(qr[0], b);
digit = qr[1].digits[0];
result += hexatrigesimalToChar[qr[1].digits[0]];
}
return (x.isNeg ? "-" : "") + reverseStr(result);
}
function biToDecimal(x) {
var b = new BigInt();
b.digits[0] = 10;
var qr = biDivideModulo(x, b);
var result = String(qr[1].digits[0]);
while (biCompare(qr[0], bigZero) == 1) {
qr = biDivideModulo(qr[0], b);
result += String(qr[1].digits[0]);
}
return (x.isNeg ? "-" : "") + reverseStr(result);
}
var hexToChar = new Array('0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f');
function digitToHex(n) {
var mask = 0xf;
var result = "";
for (i = 0; i < 4; ++i) {
result += hexToChar[n & mask];
n >>>= 4;
}
return reverseStr(result);
}
function biToHex(x) {
var result = "";
var n = biHighIndex(x);
for (var i = biHighIndex(x); i > -1; --i) {
result += digitToHex(x.digits[i]);
}
return result;
}
function charToHex(c) {
var ZERO = 48;
var NINE = ZERO + 9;
var littleA = 97;
var littleZ = littleA + 25;
var bigA = 65;
var bigZ = 65 + 25;
var result;
if (c >= ZERO && c <= NINE) {
result = c - ZERO;
} else if (c >= bigA && c <= bigZ) {
result = 10 + c - bigA;
} else if (c >= littleA && c <= littleZ) {
result = 10 + c - littleA;
} else {
result = 0;
}
return result;
}
function hexToDigit(s) {
var result = 0;
var sl = Math.min(s.length, 4);
for (var i = 0; i < sl; ++i) {
result <<= 4;
result |= charToHex(s.charCodeAt(i))
}
return result;
}
function biFromHex(s) {
var result = new BigInt();
var sl = s.length;
for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
result.digits[j] = hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
}
return result;
}
function biFromString(s, radix) {
var isNeg = s.charAt(0) == '-';
var istop = isNeg ? 1 : 0;
var result = new BigInt();
var place = new BigInt();
place.digits[0] = 1; // radix^0
for (var i = s.length - 1; i >= istop; i--) {
var c = s.charCodeAt(i);
var digit = charToHex(c);
var biDigit = biMultiplyDigit(place, digit);
result = biAdd(result, biDigit);
place = biMultiplyDigit(place, radix);
}
result.isNeg = isNeg;
return result;
}
function biToBytes(x)
// Returns a string containing raw bytes.
{
var result = "";
for (var i = biHighIndex(x); i > -1; --i) {
result += digitToBytes(x.digits[i]);
}
return result;
}
function digitToBytes(n)
// Convert two-byte digit to string containing both bytes.
{
var c1 = String.fromCharCode(n & 0xff);
n >>>= 8;
var c2 = String.fromCharCode(n & 0xff);
return c2 + c1;
}
function biDump(b) {
return (b.isNeg ? "-" : "") + b.digits.join(" ");
}
function biAdd(x, y) {
var result;
if (x.isNeg != y.isNeg) {
y.isNeg = !y.isNeg;
result = biSubtract(x, y);
y.isNeg = !y.isNeg;
}
else {
result = new BigInt();
var c = 0;
var n;
for (var i = 0; i < x.digits.length; ++i) {
n = x.digits[i] + y.digits[i] + c;
result.digits[i] = n & 0xffff;
c = Number(n >= biRadix);
}
result.isNeg = x.isNeg;
}
return result;
}
function biSubtract(x, y) {
var result;
if (x.isNeg != y.isNeg) {
y.isNeg = !y.isNeg;
result = biAdd(x, y);
y.isNeg = !y.isNeg;
} else {
result = new BigInt();
var n, c;
c = 0;
for (var i = 0; i < x.digits.length; ++i) {
n = x.digits[i] - y.digits[i] + c;
result.digits[i] = n & 0xffff;
// Stupid non-conforming modulus operation.
if (result.digits[i] < 0) result.digits[i] += biRadix;
c = 0 - Number(n < 0);
}
// Fix up the negative sign, if any.
if (c == -1) {
c = 0;
for (var i = 0; i < x.digits.length; ++i) {
n = 0 - result.digits[i] + c;
result.digits[i] = n & 0xffff;
// Stupid non-conforming modulus operation.
if (result.digits[i] < 0) result.digits[i] += biRadix;
c = 0 - Number(n < 0);
}
// Result is opposite sign of arguments.
result.isNeg = !x.isNeg;
} else {
// Result is same sign.
result.isNeg = x.isNeg;
}
}
return result;
}
function biHighIndex(x) {
var result = x.digits.length - 1;
while (result > 0 && x.digits[result] == 0) --result;
return result;
}
function biNumBits(x) {
var n = biHighIndex(x);
var d = x.digits[n];
var m = (n + 1) * bitsPerDigit;
var result;
for (result = m; result > m - bitsPerDigit; --result) {
if ((d & 0x8000) != 0) break;
d <<= 1;
}
return result;
}
function biMultiply(x, y) {
var result = new BigInt();
var c;
var n = biHighIndex(x);
var t = biHighIndex(y);
var u, uv, k;
for (var i = 0; i <= t; ++i) {
c = 0;
k = i;
for (j = 0; j <= n; ++j, ++k) {
uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
result.digits[k] = uv & maxDigitVal;
c = uv >>> biRadixBits;
}
result.digits[i + n + 1] = c;
}
// Someone give me a logical xor, please.
result.isNeg = x.isNeg != y.isNeg;
return result;
}
function biMultiplyDigit(x, y) {
var n, c, uv;
result = new BigInt();
n = biHighIndex(x);
c = 0;
for (var j = 0; j <= n; ++j) {
uv = result.digits[j] + x.digits[j] * y + c;
result.digits[j] = uv & maxDigitVal;
c = uv >>> biRadixBits;
}
result.digits[1 + n] = c;
return result;
}
function arrayCopy(src, srcStart, dest, destStart, n) {
var m = Math.min(srcStart + n, src.length);
for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
dest[j] = src[i];
}
}
var highBitMasks = new Array(0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF);
function biShiftLeft(x, n) {
var digitCount = Math.floor(n / bitsPerDigit);
var result = new BigInt();
arrayCopy(x.digits, 0, result.digits, digitCount,
result.digits.length - digitCount);
var bits = n % bitsPerDigit;
var rightBits = bitsPerDigit - bits;
for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
((result.digits[i1] & highBitMasks[bits]) >>>
(rightBits));
}
result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
result.isNeg = x.isNeg;
return result;
}
var lowBitMasks = new Array(0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF);
function biShiftRight(x, n) {
var digitCount = Math.floor(n / bitsPerDigit);
var result = new BigInt();
arrayCopy(x.digits, digitCount, result.digits, 0,
x.digits.length - digitCount);
var bits = n % bitsPerDigit;
var leftBits = bitsPerDigit - bits;
for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
result.digits[i] = (result.digits[i] >>> bits) |
((result.digits[i1] & lowBitMasks[bits]) << leftBits);
}
result.digits[result.digits.length - 1] >>>= bits;
result.isNeg = x.isNeg;
return result;
}
function biMultiplyByRadixPower(x, n) {
var result = new BigInt();
arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
return result;
}
function biDivideByRadixPower(x, n) {
var result = new BigInt();
arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
return result;
}
function biModuloByRadixPower(x, n) {
var result = new BigInt();
arrayCopy(x.digits, 0, result.digits, 0, n);
return result;
}
function biCompare(x, y) {
if (x.isNeg != y.isNeg) {
return 1 - 2 * Number(x.isNeg);
}
for (var i = x.digits.length - 1; i >= 0; --i) {
if (x.digits[i] != y.digits[i]) {
if (x.isNeg) {
return 1 - 2 * Number(x.digits[i] > y.digits[i]);
} else {
return 1 - 2 * Number(x.digits[i] < y.digits[i]);
}
}
}
return 0;
}
function biDivideModulo(x, y) {
var nb = biNumBits(x);
var tb = biNumBits(y);
var origYIsNeg = y.isNeg;
var q, r;
if (nb < tb) {
// |x| < |y|
if (x.isNeg) {
q = biCopy(bigOne);
q.isNeg = !y.isNeg;
x.isNeg = false;
y.isNeg = false;
r = biSubtract(y, x);
// Restore signs, 'cause they're references.
x.isNeg = true;
y.isNeg = origYIsNeg;
} else {
q = new BigInt();
r = biCopy(x);
}
return new Array(q, r);
}
q = new BigInt();
r = x;
// Normalize Y.
var t = Math.ceil(tb / bitsPerDigit) - 1;
var lambda = 0;
while (y.digits[t] < biHalfRadix) {
y = biShiftLeft(y, 1);
++lambda;
++tb;
t = Math.ceil(tb / bitsPerDigit) - 1;
}
// Shift r over to keep the quotient constant. We'll shift the
// remainder back at the end.
r = biShiftLeft(r, lambda);
nb += lambda; // Update the bit count for x.
var n = Math.ceil(nb / bitsPerDigit) - 1;
var b = biMultiplyByRadixPower(y, n - t);
while (biCompare(r, b) != -1) {
++q.digits[n - t];
r = biSubtract(r, b);
}
for (var i = n; i > t; --i) {
var ri = (i >= r.digits.length) ? 0 : r.digits[i];
var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
var yt = (t >= y.digits.length) ? 0 : y.digits[t];
var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
if (ri == yt) {
q.digits[i - t - 1] = maxDigitVal;
} else {
q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
}
var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
while (c1 > c2) {
--q.digits[i - t - 1];
c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
}
b = biMultiplyByRadixPower(y, i - t - 1);
r = biSubtract(r, biMultiplyDigit(b, q.digits[i - t - 1]));
if (r.isNeg) {
r = biAdd(r, b);
--q.digits[i - t - 1];
}
}
r = biShiftRight(r, lambda);
// Fiddle with the signs and stuff to make sure that 0 <= r < y.
q.isNeg = x.isNeg != origYIsNeg;
if (x.isNeg) {
if (origYIsNeg) {
q = biAdd(q, bigOne);
} else {
q = biSubtract(q, bigOne);
}
y = biShiftRight(y, lambda);
r = biSubtract(y, r);
}
// Check for the unbelievably stupid degenerate case of r == -0.
if (r.digits[0] == 0 && biHighIndex(r) == 0) r.isNeg = false;
return new Array(q, r);
}
function biDivide(x, y) {
return biDivideModulo(x, y)[0];
}
function biModulo(x, y) {
return biDivideModulo(x, y)[1];
}
function biMultiplyMod(x, y, m) {
return biModulo(biMultiply(x, y), m);
}
function biPow(x, y) {
var result = bigOne;
var a = x;
while (true) {
if ((y & 1) != 0) result = biMultiply(result, a);
y >>= 1;
if (y == 0) break;
a = biMultiply(a, a);
}
return result;
}
function biPowMod(x, y, m) {
var result = bigOne;
var a = x;
var k = y;
while (true) {
if ((k.digits[0] & 1) != 0) result = biMultiplyMod(result, a, m);
k = biShiftRight(k, 1);
if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
a = biMultiplyMod(a, a, m);
}
return result;
}
// BarrettMu, a class for performing Barrett modular reduction computations in
// JavaScript.
//
// Requires BigInt.js.
//
// Copyright 2004-2005 David Shapiro.
//
// You may use, re-use, abuse, copy, and modify this code to your liking, but
// please keep this header.
//
// Thanks!
//
// Dave Shapiro
function BarrettMu(m) {
this.modulus = biCopy(m);
this.k = biHighIndex(this.modulus) + 1;
var b2k = new BigInt();
b2k.digits[2 * this.k] = 1; // b2k = b^(2k)
this.mu = biDivide(b2k, this.modulus);
this.bkplus1 = new BigInt();
this.bkplus1.digits[this.k + 1] = 1; // bkplus1 = b^(k+1)
this.modulo = BarrettMu_modulo;
this.multiplyMod = BarrettMu_multiplyMod;
this.powMod = BarrettMu_powMod;
}
function BarrettMu_modulo(x) {
var q1 = biDivideByRadixPower(x, this.k - 1);
var q2 = biMultiply(q1, this.mu);
var q3 = biDivideByRadixPower(q2, this.k + 1);
var r1 = biModuloByRadixPower(x, this.k + 1);
var r2term = biMultiply(q3, this.modulus);
var r2 = biModuloByRadixPower(r2term, this.k + 1);
var r = biSubtract(r1, r2);
if (r.isNeg) {
r = biAdd(r, this.bkplus1);
}
var rgtem = biCompare(r, this.modulus) >= 0;
while (rgtem) {
r = biSubtract(r, this.modulus);
rgtem = biCompare(r, this.modulus) >= 0;
}
return r;
}
function BarrettMu_multiplyMod(x, y) {
/*
x = this.modulo(x);
y = this.modulo(y);
*/
var xy = biMultiply(x, y);
return this.modulo(xy);
}
function BarrettMu_powMod(x, y) {
var result = new BigInt();
result.digits[0] = 1;
var a = x;
var k = y;
while (true) {
if ((k.digits[0] & 1) != 0) result = this.multiplyMod(result, a);
k = biShiftRight(k, 1);
if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
a = this.multiplyMod(a, a);
}
return result;
}
/**
* RSA
*/
/*
* Copyright (c) 2015 Eric Wilde.
* Copyright 1998-2015 David Shapiro.
*
* RSA.js is a suite of routines for performing RSA public-key computations
* in JavaScript. The cryptographic functions herein are used for encoding
* and decoding strings to be sent over unsecure channels.
*
* To use these routines, a pair of public/private keys is created through a
* number of means (OpenSSL tools on Linux/Unix, Dave Shapiro's
* RSAKeyGenerator program on Windows). These keys are passed to RSAKeyPair
* as hexadecimal strings to create an encryption key object. This key object
* is then used with encryptedString to encrypt blocks of plaintext using the
* public key. The resulting cyphertext blocks can be decrypted with
* decryptedString.
*
* Note that the cryptographic functions herein are complementary to those
* found in CryptoFuncs.php and CryptoFuncs.pm. Hence, encrypted messages may
* be sent between programs written in any of those languages. The most
* useful, of course is to send messages encrypted by a Web page using RSA.js
* to a PHP or Perl script running on a Web servitron.
*
* Also, the optional padding flag may be specified on the call to
* encryptedString, in which case blocks of cyphertext that are compatible
* with real crypto libraries such as OpenSSL or Microsoft will be created.
* These blocks of cyphertext can then be sent to Web servitron that uses one
* of these crypto libraries for decryption. This allows messages encrypted
* with longer keys to be decrypted quickly on the Web server as well as
* making for more secure communications when a padding algorithm such as
* PKCS1v1.5 is used.
*
* These routines require BigInt.js and Barrett.js.
*/
/*****************************************************************************/
/*
* Modifications
* -------------
*
* 2014 Jan 11 E. Wilde Add optional padding flag to encryptedString
* for compatibility with real crypto libraries
* such as OpenSSL or Microsoft. Add PKCS1v1.5
* padding.
*
* 2015 Jan 5 D. Shapiro Add optional encoding flag for encryptedString
* and encapsulate padding and encoding constants
* in RSAAPP object.
*
* Original Code
* -------------
*
* Copyright 1998-2005 David Shapiro.
*
* You may use, re-use, abuse, copy, and modify this code to your liking, but
* please keep this header.
*
* Thanks!
*
* Dave Shapiro
*/
/*****************************************************************************/
var RSAAPP = {};
RSAAPP.NoPadding = "NoPadding";
RSAAPP.PKCS1Padding = "PKCS1Padding";
RSAAPP.RawEncoding = "RawEncoding";
RSAAPP.NumericEncoding = "NumericEncoding"
/*****************************************************************************/
function RSAKeyPair(encryptionExponent, decryptionExponent, modulus, keylen)
/*
* encryptionExponent The encryption exponent (i.e. public
* encryption key) to be used for
* encrypting messages. If you aren't
* doing any encrypting, a dummy
* exponent such as "10001" can be
* passed.
*
* decryptionExponent The decryption exponent (i.e. private
* decryption key) to be used for
* decrypting messages. If you aren't
* doing any decrypting, a dummy
* exponent such as "10001" can be
* passed.
*
* modulus The modulus to be used both for
* encrypting and decrypting messages.
*
* keylen The optional length of the key, in
* bits. If omitted, RSAKeyPair will
* attempt to derive a key length (but,
* see the notes below).
*
* returns The "new" object creator returns an
* instance of a key object that can be
* used to encrypt/decrypt messages.
*
* This routine is invoked as the first step in the encryption or decryption
* process to take the three numbers (expressed as hexadecimal strings) that
* are used for RSA asymmetric encryption/decryption and turn them into a key
* object that can be used for encrypting and decrypting.
*
* The key object is created thusly:
*
* RSAKey = new RSAKeyPair("ABC12345", 10001, "987654FE");
*
* or:
*
* RSAKey = new RSAKeyPair("ABC12345", 10001, "987654FE", 64);
*
* Note that RSAKeyPair will try to derive the length of the key that is being
* used, from the key itself. The key length is especially useful when one of
* the padding options is used and/or when the encrypted messages created by
* the routine encryptedString are exchanged with a real crypto library such
* as OpenSSL or Microsoft, as it determines how many padding characters are
* appended.
*
* Usually, RSAKeyPair can determine the key length from the modulus of the
* key but this doesn't always work properly, depending on the actual value of
* the modulus. If you are exchanging messages with a real crypto library,
* such as OpenSSL or Microsoft, that depends on the fact that the blocks
* being passed to it are properly padded, you'll want the key length to be
* set properly. If that's the case, of if you just want to be sure, you
* should specify the key length that you used to generated the key, in bits
* when this routine is invoked.
*/ {
/*
* Convert from hexadecimal and save the encryption/decryption exponents and
* modulus as big integers in the key object.
*/
this.e = biFromHex(encryptionExponent);
this.d = biFromHex(decryptionExponent);
this.m = biFromHex(modulus);
/*
* Using big integers, we can represent two bytes per element in the big
* integer array, so we calculate the chunk size as:
*
* chunkSize = 2 * (number of digits in modulus - 1)
*
* Since biHighIndex returns the high index, not the number of digits, the
* number 1 has already been subtracted from its answer.
*
* However, having said all this, "User Knows Best". If our caller passes us
* a key length (in bits), we'll treat it as gospel truth.
*/
if (typeof (keylen) != 'number') { this.chunkSize = 2 * biHighIndex(this.m); }
else { this.chunkSize = keylen / 8; }
this.radix = 16;
/*
* Precalculate the stuff used for Barrett modular reductions.
*/
this.barrett = new BarrettMu(this.m);
}
/*****************************************************************************/
function encryptedString(key, s, pad, encoding)
/*
* key The previously-built RSA key whose
* public key component is to be used to
* encrypt the plaintext string.
*
* s The plaintext string that is to be
* encrypted, using the RSA assymmetric
* encryption method.
*
* pad The optional padding method to use
* when extending the plaintext to the
* full chunk size required by the RSA
* algorithm. To maintain compatibility
* with other crypto libraries, the
* padding method is described by a
* string. The default, if not
* specified is "OHDave". Here are the
* choices:
*
* OHDave - this is the original
* padding method employed by Dave
* Shapiro and Rob Saunders. If
* this method is chosen, the
* plaintext can be of any length.
* It will be padded to the correct
* length with zeros and then broken
* up into chunks of the correct
* length before being encrypted.
* The resultant cyphertext blocks
* will be separated by blanks.
*
* Note that the original code by
* Dave Shapiro reverses the byte
* order to little-endian, as the
* plaintext is encrypted. If
* either these JavaScript routines
* or one of the complementary
* PHP/Perl routines derived from
* this code is used for decryption,
* the byte order will be reversed
* again upon decryption so as to
* come out correctly.
*
* Also note that this padding
* method is claimed to be less
* secure than PKCS1Padding.
*
* NoPadding - this method truncates
* the plaintext to the length of
* the RSA key, if it is longer. If
* its length is shorter, it is
* padded with zeros. In either
* case, the plaintext string is
* reversed to preserve big-endian
* order before it is encrypted to
* maintain compatibility with real
* crypto libraries such as OpenSSL
* or Microsoft. When the
* cyphertext is to be decrypted
* by a crypto library, the
* library routine's RSAAPP.NoPadding
* flag, or its equivalent, should
* be used.
*
* Note that this padding method is
* claimed to be less secure than
* PKCS1Padding.
*
* PKCS1Padding - the PKCS1v1.5
* padding method (as described in
* RFC 2313) is employed to pad the
* plaintext string. The plaintext
* string must be no longer than the
* length of the RSA key minus 11,
* since PKCS1v1.5 requires 3 bytes
* of overhead and specifies a
* minimum pad of 8 bytes. The
* plaintext string is padded with
* randomly-generated bytes and then
* its order is reversed to preserve
* big-endian order before it is
* encrypted to maintain
* compatibility with real crypto
* libraries such as OpenSSL or
* Microsoft. When the cyphertext
* is to be decrypted by a crypto
* library, the library routine's
* RSAAPP.PKCS1Padding flag, or its
* equivalent, should be used.
*
* encoding The optional encoding scheme to use
* for the return value. If ommitted,
* numeric encoding will be used.
*
* RawEncoding - The return value
* is given as its raw value.
* This is the easiest method when
* interoperating with server-side
* OpenSSL, as no additional conversion
* is required. Use the constant
* RSAAPP.RawEncoding for this option.
*
* NumericEncoding - The return value
* is given as a number in hexadecimal.
* Perhaps useful for debugging, but
* will need to be translated back to
* its raw equivalent (e.g. using
* PHP's hex2bin) before using with
* OpenSSL. Use the constant
* RSAAPP.NumericEncoding for this option.
*
* returns The cyphertext block that results
* from encrypting the plaintext string
* s with the RSA key.
*
* This routine accepts a plaintext string that is to be encrypted with the
* public key component of the previously-built RSA key using the RSA
* assymmetric encryption method. Before it is encrypted, the plaintext
* string is padded to the same length as the encryption key for proper
* encryption.
*
* Depending on the padding method chosen, an optional header with block type
* is prepended, the plaintext is padded using zeros or randomly-generated
* bytes, and then the plaintext is possibly broken up into chunks.
*
* Note that, for padding with zeros, this routine was altered by Rob Saunders
* ([email protected]). The new routine pads the string after it has been
* converted to an array. This fixes an incompatibility with Flash MX's
* ActionScript.
*
* The various padding schemes employed by this routine, and as presented to
* RSA for encryption, are shown below. Note that the RSA encryption done
* herein reverses the byte order as encryption is done:
*
* Plaintext In
* ------------
*
* d5 d4 d3 d2 d1 d0
*
* OHDave
* ------
*
* d5 d4 d3 d2 d1 d0 00 00 00 /.../ 00 00 00 00 00 00 00 00