-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
459 lines (386 loc) · 14.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# -*- coding: utf-8 -*-
import os
import random
import yaml
import numpy as np
import time
import math
import torch
import wandb
import torch.nn as nn
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from box import Box
from src.training import train
from src.testing import evaluate
from model.preprocessing.preprocess_data import preprocess_dataset
from model.grenc_trdec_model.model import Grenc_Trdec_Model
from model.grenc_trdec_model.graph_encoder import Graph_Encoder
from model.grenc_trdec_model.vit_encoder import VisionTransformer
from model.grenc_trdec_model.decoder import Transformer_Decoder
# opening training_args file
with open('configs/config.yaml') as f:
cfg = Box(yaml.safe_load(f))
buiding_graph_args = cfg.building_graph
training_args = cfg.training
preprocessing_args = cfg.preprocessing
graph_args = cfg.model.graph_model
vit_args = cfg.model.vit
xfmer_args = cfg.model.decoder_transformer
# for deterministic results, make it False.
# to optimize performance, make it True, but that
# might affect the results a bit at atomic level.
torch.backends.cudnn.enabled = False
def set_random_seed(SEED):
# set up seed
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
def define_model(vocab, device):
"""
defining the model
initializing encoder, decoder, and model
"""
print("defining model...")
isGraphPixel = cfg.model.isGraphPixel
isVitPixel = cfg.model.isVitPixel
gr_dropout = graph_args.dropout
# assert isGraphPixel or isVitPixel, "Need to select either one of the encoder or both of them."
if (not isGraphPixel) and (not isVitPixel):
print(" NO PIXEL ENCODER IS PRESENT!!")
image_w = buiding_graph_args.preprocessed_image_width
image_h = buiding_graph_args.preprocessed_image_height
assert image_w % cfg.model.vit.patch_size == 0
assert image_h % cfg.model.vit.patch_size == 0
n_patches = (
image_w // cfg.model.vit.patch_size
) * (
image_h // cfg.model.vit.patch_size
)
n_pixels = image_h * image_w
if isGraphPixel:
Gr_ENC = Graph_Encoder(
in_channels=graph_args.input_channels,
hidden_channels=graph_args.hid_dim,
vit_embed_dim=vit_args.emb_dim,
n_patches=n_patches,
n_pixels=n_pixels,
dropout=gr_dropout,
)
else:
Gr_ENC = None
Vit_ENC = VisionTransformer(
img_size=[image_w,image_h],
patch_size=vit_args.patch_size,
pixel_patch_size=vit_args.pixel_patch_size,
in_chns=graph_args.input_channels,
embed_dim=vit_args.emb_dim,
depth=vit_args.depth,
n_heads=vit_args.nheads,
mlp_ratio=vit_args.mlp_ratio,
qkv_bias=vit_args.qkv_bias,
p=gr_dropout,
attn_p=gr_dropout,
isVitPixel=isVitPixel,
)
Tr_DEC = Transformer_Decoder(
vit_emb_dim=vit_args.emb_dim,
dec_emb_dim=xfmer_args.emb_dim,
dec_hid_dim=xfmer_args.dec_hid_dim,
nheads=xfmer_args.nheads,
output_dim=len(vocab),
n_patches=n_patches,
dropout=gr_dropout,
max_len=xfmer_args.max_len,
n_xfmer_decoder_layers=xfmer_args.n_xfmer_decoder_layers,
dim_feedfwd=xfmer_args.dim_feedfwd,
device=device,
)
model = Grenc_Trdec_Model(vocab,
device,
Gr_ENC,
Vit_ENC,
Tr_DEC,
isGraph=isGraphPixel,
isVitPixel=isVitPixel,
)
return model
def init_weights(m):
"""
initializing the model wghts with values
drawn from normal distribution.
else initialize them with 0.
"""
for name, param in m.named_parameters():
if "weight" in name:
nn.init.normal_(param.data, mean=0, std=0.01)
else:
nn.init.constant_(param.data, 0)
def count_parameters(model):
"""
counting total number of parameters
"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def epoch_time(start_time, end_time):
"""
epoch timing
"""
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def train_model(rank=None,):
# parameters
epochs = training_args["epochs"]
batch_size = training_args["batch_size"]
learning_rate = training_args["learning_rate"]
weight_decay = training_args["weight_decay"]
[beta1, beta2] = training_args["betas"]
clip = training_args["clip"]
seed = training_args["seed"]
ddp = training_args["ddp"]
gpus = training_args["gpus"]
world_size = training_args["world_size"]
load_trained_model_for_testing = training_args["load_trained_model_for_testing"]
early_stopping_counts = training_args.early_stopping
if (training_args.wandb):
if (not ddp) or (ddp and rank == 0):
# initiate the wandb
wandb.init()
wandb.config.update(cfg)
# set_random_seed
set_random_seed(seed)
# to save trained model and logs
folders = ["trained_models", "logs"]
for f in folders:
if not os.path.exists(f):
os.mkdir(f)
# to log losses
loss_file = open("logs/loss_file.txt", "w")
# defining model using DataParallel
preprocessing_args["batch_size"] = training_args.batch_size
preprocessing_args["max_len"] = xfmer_args.max_len
preprocessing_args["ddp"] = training_args.ddp
preprocessing_args["world_size"] = world_size
preprocessing_args["rank"] = rank
if torch.cuda.is_available():
if ddp:
# add a few args for temporarily purpose
# this is to avoid replicating in config file
# create default process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
# add rank to training_args
training_args["rank"] = rank
device = f"cuda:{rank}"
(
train_dataloader,
test_dataloader,
val_dataloader,
vocab,
) = preprocess_dataset(preprocessing_args)
model = define_model(vocab, rank)
model = DDP(
model.to(device),
device_ids=[rank],
output_device=rank,
find_unused_parameters=True,
)
else:
print(f"using gpu {str(gpus)}...")
# os.environ["CUDA_VISIBLE_DEVICES"] = str(gpus)
device = torch.device(f"cuda:{gpus}")
(
train_dataloader,
test_dataloader,
val_dataloader,
vocab,
) = preprocess_dataset(preprocessing_args)
model = define_model(vocab, device).to("cuda")
else:
import warnings
warnings.warn("No GPU input has provided. Falling back to CPU. ")
device = torch.device("cpu")
(
train_dataloader,
test_dataloader,
val_dataloader,
vocab,
) = preprocess_dataset(preprocessing_args)
model = define_model(vocab, device).to(device)
print("MODEL: ")
print(f"The model has {count_parameters(model)} trainable parameters")
# intializing loss function
criterion = torch.nn.CrossEntropyLoss(ignore_index=vocab.stoi["<pad>"])
# optimizer
optimizer = torch.optim.AdamW(
params=model.parameters(),
lr=learning_rate,
weight_decay=weight_decay,
betas=(beta1, beta2),
)
# multistep_lr scheduler
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
# step_size=training_args.scheduler_step_size,
milestones=[50],
gamma=training_args.scheduler_gamma,
)
best_valid_loss = float("inf")
if training_args.wandb:
if (not ddp) or (ddp and rank == 0):
wandb.watch(model)
# raw data paths
img_tnsr_path = f"{preprocessing_args.path_to_data}/image_tensors"
img_graph_path = f"{preprocessing_args.path_to_data}/image_graphs"
if not load_trained_model_for_testing:
count_es = 0
for epoch in range(epochs):
if count_es <= early_stopping_counts:
start_time = time.time()
# training and validation
train_loss = train(
model,
img_tnsr_path,
img_graph_path,
train_dataloader,
optimizer,
criterion,
clip,
device,
isGraphPixel=cfg["model"]["isGraphPixel"],
ddp=ddp,
rank=rank,
)
val_loss = evaluate(
model,
img_tnsr_path,
img_graph_path,
batch_size,
val_dataloader,
criterion,
device,
vocab,
isGraphPixel=cfg["model"]["isGraphPixel"],
)
if training_args.wandb:
if (not ddp) or (ddp and rank == 0):
wandb.log({"train_loss": train_loss})
wandb.log({"val_loss": val_loss})
end_time = time.time()
# total time spent on training an epoch
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
scheduler.step()
# saving the current model for transfer learning
if (not ddp) or (ddp and rank == 0):
torch.save(
model.state_dict(),
f"trained_models/{preprocessing_args['markup']}_latest.pt",
)
if val_loss < best_valid_loss:
best_valid_loss = val_loss
count_es = 0
if (not ddp) or (ddp and rank == 0):
torch.save(
model.state_dict(),
f"trained_models/{preprocessing_args['markup']}_best.pt",
)
if training_args.wandb:
wandb.save(f"trained_models/{preprocessing_args['markup']}_best.pt")
else:
count_es += 1
# logging
if (not ddp) or (ddp and rank == 0):
print(
f"Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s"
)
print(
f"\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}"
)
print(
f"\t Val. Loss: {val_loss:.3f} | Val. PPL: {math.exp(val_loss):7.3f}"
)
loss_file.write(
f"Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s\n"
)
loss_file.write(
f"\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}\n"
)
loss_file.write(
f"\t Val. Loss: {val_loss:.3f} | Val. PPL: {math.exp(val_loss):7.3f}\n"
)
else:
print(
f"Terminating the training process as the validation \
loss hasn't been reduced from last {early_stopping_counts} epochs."
)
break
print(
"best model saved as: ",
f"trained_models/{preprocessing_args['markup']}_best.pt",
)
if ddp:
dist.destroy_process_group()
time.sleep(3)
print(
"loading best saved model: ",
f"trained_models/{preprocessing_args['markup']}_best.pt",
)
# loading pre_tained_model
model.load_state_dict(
torch.load(
f"trained_models/{preprocessing_args['markup']}_best.pt"
)
)
# =========================
# TEMP
"""
bin comparison
"""
if cfg.temp.bin_comparison:
print("comparing bin...")
from temp import bin_test_dataloader
test_dataloader = bin_test_dataloader(
vocab,
device,
start=cfg.temp.start_bin,
end=cfg.temp.end_bin,
length_based_binning=cfg.temp.length_based_binning,
content_based_binning=cfg.temp.content_based_binning,
)
# =========================
test_loss = evaluate(
model,
img_tnsr_path,
img_graph_path,
batch_size,
test_dataloader,
criterion,
device,
vocab,
isGraphPixel=cfg["model"]["isGraphPixel"],
is_test=True,
)
if (not ddp) or (ddp and rank == 0):
print(
f"| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |"
)
loss_file.write(
f"| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |"
)
# stopping time
print(time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()))
# for DDP
def ddp_main(world_size,):
# os.environ["CUDA_VISIBLE_DEVICES"] = gpus
mp.spawn(train_model, args=(), nprocs=world_size, join=True)
if __name__ == "__main__":
if training_args["ddp"]:
gpus = training_args["gpus"]
world_size = training_args["world_size"]
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29800"
ddp_main(world_size)
else:
train_model()