-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
154 lines (121 loc) · 4.25 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
const tf = require('@tensorflow/tfjs-node');
const maxvis = require('@codait/max-vis');
const fs = require('fs');
const path = require('path');
const labels = require('./labels.js')
const modelUrl = 'https://tfhub.dev/tensorflow/tfjs-model/ssdlite_mobilenet_v2/1/default/1';
const maxNumBoxes = 5;
let height = 1;
let width = 1;
let model;
// load COCO-SSD graph model from TensorFlow Hub
const loadModel = async function () {
console.log(`loading model from ${modelUrl}`);
model = await tf.loadGraphModel(modelUrl, {fromTFHub: true});
return model;
}
// convert image to Tensor
const processInput = function (imagePath) {
console.log(`preprocessing image ${imagePath}`);
const image = fs.readFileSync(imagePath);
const buf = Buffer.from(image);
const uint8array = new Uint8Array(buf);
return tf.node.decodeImage(uint8array, 3).expandDims();
}
// run prediction with the provided input Tensor
const runModel = function (inputTensor) {
console.log('runnning model');
return model.executeAsync(inputTensor);
}
// process the model output into a friendly JSON format
const processOutput = function (prediction) {
console.log('processOutput');
const [maxScores, classes] = extractClassesAndMaxScores(prediction[0]);
const indexes = calculateNMS(prediction[1], maxScores);
return createJSONresponse(prediction[1].dataSync(), maxScores, indexes, classes);
}
// determine the classes and max scores from the prediction
const extractClassesAndMaxScores = function (predictionScores) {
console.log('calculating classes & max scores');
const scores = predictionScores.dataSync();
const numBoxesFound = predictionScores.shape[1];
const numClassesFound = predictionScores.shape[2];
const maxScores = [];
const classes = [];
// for each bounding box returned
for (let i = 0; i < numBoxesFound; i++) {
let maxScore = -1;
let classIndex = -1;
// find the class with the highest score
for (let j = 0; j < numClassesFound; j++) {
if (scores[i * numClassesFound + j] > maxScore) {
maxScore = scores[i * numClassesFound + j];
classIndex = j;
}
}
maxScores[i] = maxScore;
classes[i] = classIndex;
}
return [maxScores, classes];
}
// perform non maximum suppression of bounding boxes
const calculateNMS = function (outputBoxes, maxScores) {
console.log('calculating box indexes');
const boxes = tf.tensor2d(outputBoxes.dataSync(), [outputBoxes.shape[1], outputBoxes.shape[3]]);
const indexTensor = tf.image.nonMaxSuppression(boxes, maxScores, maxNumBoxes, 0.5, 0.5);
return indexTensor.dataSync();
}
// create JSON object with bounding boxes and label
const createJSONresponse = function (boxes, scores, indexes, classes) {
console.log('create JSON output');
const count = indexes.length;
const objects = [];
for (let i = 0; i < count; i++) {
const bbox = [];
for (let j = 0; j < 4; j++) {
bbox[j] = boxes[indexes[i] * 4 + j];
}
const minY = bbox[0] * height;
const minX = bbox[1] * width;
const maxY = bbox[2] * height;
const maxX = bbox[3] * width;
console.log(classes[indexes[i]])
objects.push({
bbox: [minX, minY, maxX, maxY],
label: labels[classes[indexes[i]]],
score: scores[indexes[i]]
});
}
return objects;
}
const annotateImage = function (prediction, imagePath) {
console.log(`annotating prediction result(s)`);
maxvis.annotate(prediction, imagePath)
.then(annotatedImageBuffer => {
const f = path.join(path.parse(imagePath).dir, `${path.parse(imagePath).name}-annotate.png`);
fs.writeFile(f, annotatedImageBuffer, (err) => {
if (err) {
console.error(err);
} else {
console.log(`annotated image saved as ${f}\r\n`);
}
});
});
}
// run
if (process.argv.length < 3) {
console.log('please pass an image to process. ex:');
console.log(' node run-tfjs-model.js /path/to/image.jpg');
} else {
// e.g., /path/to/image.jpg
let imagePath = process.argv[2];
loadModel().then(model => {
const inputTensor = processInput(imagePath);
height = inputTensor.shape[1];
width = inputTensor.shape[2];
return runModel(inputTensor);
}).then(prediction => {
const jsonOutput = processOutput(prediction);
annotateImage(jsonOutput, imagePath);
})
}