-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
73 lines (61 loc) · 2.83 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
import torchvision.models as models
from torch.nn.utils.rnn import pack_padded_sequence
from torch.autograd import Variable
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
"""Load the pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
self.resnet = models.resnet101(pretrained=True)
for param in self.resnet.parameters():
param.requires_grad = False
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
self.bn = nn.BatchNorm1d(embed_size, momentum=0.01)
self.init_weights()
def init_weights(self):
"""Initialize the weights."""
self.resnet.fc.weight.data.normal_(0.0, 0.02)
self.resnet.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract the image feature vectors."""
features = self.resnet(images)
features = self.bn(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
"""Set the hyper-parameters and build the layers."""
super(DecoderRNN, self).__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.init_weights()
def init_weights(self):
"""Initialize weights."""
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.weight.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
def forward(self, features, captions, lengths):
"""Decode image feature vectors and generates captions."""
embeddings = self.embed(captions)
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
hiddens, _ = self.lstm(packed)
outputs = self.linear(hiddens[0])
# print outputs.size()
return outputs
def sample(self, features, states):
"""Samples captions for given image features (Greedy search)."""
sampled_ids = []
inputs = features.unsqueeze(0)
for i in range(20): # maximum sampling length
hiddens, states = self.lstm(inputs, states) # (batch_size, 1, hidden_size)
outputs = self.linear(hiddens.squeeze(1)) # (batch_size, vocab_size)
predicted = outputs.max(1)[1]
print int(predicted)
sampled_ids.append(int(predicted))
inputs = self.embed(predicted)
inputs = inputs.unsqueeze(0)
print len(sampled_ids)
#sampled_ids = torch.cat(sampled_ids, 1) # (batch_size, 20)
return sampled_ids #.squeeze()