forked from jesusgf96/Broad-UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerators.py
96 lines (71 loc) · 3.28 KB
/
generators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import tensorflow as tf
import numpy as np
from os import listdir
class DataGeneratorCloudsData(tf.keras.utils.Sequence):
def __init__(self, dir_data, ts_lags, ts_ahead, batch_size, shuffle = False, dim_model = '3d'):
# Get path to samples
self.path_samples = []
self.dir_data = dir_data
for s in listdir(dir_data):
self.path_samples.append(dir_data+str('/')+s)
self.path_samples = np.asarray(self.path_samples)
# Shuffle data
if shuffle:
idx = np.random.permutation(len(self.path_samples))
self.path_samples = self.path_samples[idx]
self.b_size = batch_size
self.num_samples = len(self.path_samples)
self.ts_lags = ts_lags
self.ts_ahead = ts_ahead
self.dim_model = dim_model
def create_validation_generator(self, percentage_data):
# Instantiate validation generator
val_generator = DataGeneratorCloudsData(dir_data=self.dir_data, ts_lags=self.ts_lags, ts_ahead=self.ts_ahead, batch_size=self.b_size, shuffle = False, dim_model=self.dim_model)
# Split samples between training and validation
val_generator.path_samples = self.path_samples[-int(self.num_samples*percentage_data):]
val_generator.num_samples = len(val_generator.path_samples)
self.path_samples = self.path_samples[:-int(self.num_samples*percentage_data)]
self.num_samples = len(self.path_samples)
return val_generator
#Calculates the number of batches
def __len__(self):
return int(self.num_samples/self.b_size)
#Obtains one batch of data
def __getitem__(self, idx):
x = []
y = []
# Reading images for samples
for sample in self.path_samples[idx*self.b_size:(idx+1)*self.b_size]:
x.append(np.load(sample)['arr_0'][:, :, :self.ts_lags])
y.append(np.load(sample)['arr_0'][:, :, self.ts_lags+self.ts_ahead-1])
# 3D_UNet
if self.dim_model == '3d':
x = np.moveaxis(x, -1, 1)
x = np.expand_dims(x, axis=-1)
y = np.expand_dims(y, axis=-1)
y = np.moveaxis(y, -1, 1)
y = np.expand_dims(y, axis=-1)
# 2D_UNet
else:
y = np.expand_dims(y, axis=-1)
x = np.asarray(x)
y = np.asarray(y)
return x, y
class DataGeneratorPrecipitationData(tf.keras.utils.Sequence):
def __init__(self, data, batch_size, lags):
self.data = data
self.b_size = batch_size
self.lags = lags
self.time_steps = data.shape[0]
#Calculates the number of batches: samples/batch_size
def __len__(self):
#Calculating the number of batches
return int(self.time_steps/self.b_size)
#Obtains one batch of data
def __getitem__(self, idx):
x = self.data[idx*self.b_size:(idx+1)*self.b_size, 0:self.lags, :, :]
y = self.data[idx*self.b_size:(idx+1)*self.b_size, -1, :, :]
x = np.expand_dims(x, axis=-1)
y = np.expand_dims(y, axis=-1)
y = np.expand_dims(y, axis=1)
return x, y