forked from jesusgf96/Broad-UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
153 lines (129 loc) · 5.47 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import h5py
import tensorflow as tf
import numpy as np
# Custom metric to calculate the denormalized for the precipitation data
class MSE_denormalized:
def __init__(self, maxValue, batch_size, latitude, longitude, reduction_sum=False):
self.maxValue = maxValue
self.batch_size = batch_size
self.n_pixels = tf.cast(tf.math.multiply(latitude, longitude), tf.float32)
if reduction_sum:
self.mse = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM)
else:
self.mse = tf.keras.losses.MeanSquaredError()
def mse_denormalized_per_image(self, y_true, y_pred):
# Denormalizing ground truth
y_true = tf.math.multiply(y_true, self.maxValue)
# Denormalizing prediction
y_pred = tf.math.multiply(y_pred, self.maxValue)
# Calculating mse per image
mse_image = tf.truediv(self.mse(y_true, y_pred), self.batch_size)
return mse_image
def mse_denormalized_per_pixel(self, y_true, y_pred):
# Calculating mse per image
mse_image = self.mse_denormalized_per_image(y_true, y_pred)
# Calculating mse per pixel
mse_pixel = tf.truediv(mse_image, self.n_pixels)
return mse_pixel
# Convert output to binary mask and calculate metrics
class thresholded_mask_metrics:
def __init__(self, test_data=None, threshold=None):
self._binarized_mse = tf.keras.losses.MeanSquaredError()
self._acc = tf.keras.metrics.Accuracy()
self._precision = tf.keras.metrics.Precision()
self._recall = tf.keras.metrics.Recall()
if threshold is not None:
self._threshold = threshold
else:
self._threshold = np.mean(test_data)
self._TP = tf.keras.metrics.TruePositives()
self._TN = tf.keras.metrics.TrueNegatives()
self._FP = tf.keras.metrics.FalsePositives()
self._FN = tf.keras.metrics.FalseNegatives()
def binarize_mask(self, values):
# Initialize TF values
zero = tf.cast(tf.constant(0), tf.float32)
one = tf.cast(tf.constant(1), tf.float32)
limit = tf.cast(tf.constant(self._threshold), tf.float32)
# Replacing values for 0s and 1s
values = tf.where(tf.math.greater_equal(values, limit), one, values)
values = tf.where(tf.math.less(values, limit), zero, values)
return values
def binarized_mse(self, y_true, y_pred):
# Binarize mask
y_true = self.binarize_mask(y_true)
y_pred = self.binarize_mask(y_pred)
# Calculate metrics
return self._binarized_mse(y_true, y_pred)
def acc(self, y_true, y_pred):
# Binarize mask
y_true = self.binarize_mask(y_true)
y_pred = self.binarize_mask(y_pred)
# Calculate metrics
return self._acc(y_true, y_pred)
def precision(self, y_true, y_pred):
# Binarize mask
y_true = self.binarize_mask(y_true)
y_pred = self.binarize_mask(y_pred)
# Calculate metrics
return self._precision(y_true, y_pred)
def recall(self, y_true, y_pred):
# Binarize mask
y_true = self.binarize_mask(y_true)
y_pred = self.binarize_mask(y_pred)
# Calculate metrics
return self._recall(y_true, y_pred)
def f1_score(self, y_true, y_pred):
# Binarize mask
y_true = self.binarize_mask(y_true)
y_pred = self.binarize_mask(y_pred)
# Calculate metrics
precision = self._precision(y_true, y_pred)
recall = self._recall(y_true, y_pred)
return 2 * precision * recall / (precision + recall)
def CSI(self, y_true, y_pred):
# Binarize mask
y_true = self.binarize_mask(y_true)
y_pred = self.binarize_mask(y_pred)
# Calculate TP, TN, FP, FN
TP = self._TP(y_true, y_pred)
TN = self._TN(y_true, y_pred)
FP = self._FP(y_true, y_pred)
FN = self._FN(y_true, y_pred)
# Calculate metrics
return TP/(TP+FN+FP)
def FAR(self, y_true, y_pred):
# Binarize mask
y_true = self.binarize_mask(y_true)
y_pred = self.binarize_mask(y_pred)
# Calculate TP, TN, FP, FN
TP = self._TP(y_true, y_pred)
TN = self._TN(y_true, y_pred)
FP = self._FP(y_true, y_pred)
FN = self._FN(y_true, y_pred)
# Calculate metrics
return FP/(TP+FP)
def model_persistence(x):
return x[:, :, -1]
def acc(y_true, y_pred):
return np.sum((np.asarray(y_true) == np.asarray(y_pred))) / (y_true.shape[0]*y_true.shape[1])
def precision(y_true, y_pred):
TP = ((y_pred == 1) & (y_true == 1)).sum()
FP = ((y_pred == 1) & (y_true == 0)).sum()
return TP / (TP+FP)
def recall(y_true, y_pred):
TP = ((y_pred == 1) & (y_true == 1)).sum()
FP = ((y_pred == 1) & (y_true == 0)).sum()
FN = ((y_pred == 0) & (y_true == 1)).sum()
return TP / (TP+FN)
def extract_datasets(hdf_file):
def h5py_dataset_iterator(g, prefix=''):
for key in g.keys():
item = g[key]
path = f'{prefix}/{key}'
if isinstance(item, h5py.Dataset): # test for dataset
yield (path, item)
elif isinstance(item, h5py.Group): # test for group (go down)
yield from h5py_dataset_iterator(item, path)
for path, _ in h5py_dataset_iterator(hdf_file):
yield path