|
| 1 | +from plot import make_plot |
| 2 | +from copy import deepcopy |
| 3 | + |
| 4 | + |
| 5 | +def extract_training_results(fn): |
| 6 | + data = {} |
| 7 | + with open(fn, 'r') as f: |
| 8 | + epoch = 0 |
| 9 | + for l in f: |
| 10 | + if 'Train:' in l: |
| 11 | + s = l.split('\t') |
| 12 | + loss = float(s[3].split(' ')[1]) |
| 13 | + data.setdefault(epoch, {}).setdefault('loss', []).append(loss) |
| 14 | + |
| 15 | + if 'DONE' in l: |
| 16 | + epoch += 1 |
| 17 | + return data |
| 18 | + |
| 19 | + |
| 20 | +def extract_val_results(fn): |
| 21 | + data = {} |
| 22 | + clustering = False |
| 23 | + last_clustering = False |
| 24 | + with open(fn, 'r') as f: |
| 25 | + epoch = 0 |
| 26 | + for l in f: |
| 27 | + if 'clustering...' in l: |
| 28 | + clustering = True |
| 29 | + if 'Test:' in l: |
| 30 | + s = l.split('\t') |
| 31 | + #epoch = int(s[0].split('[')[1].split(']')[0]) |
| 32 | + top_1 = float(s[-2].split(' ')[1].split(' ')[0]) |
| 33 | + top_3 = float(s[-1].split(' ')[1].split(' ')[0]) |
| 34 | + time = float(s[1].split(' ')[1].split(' ')[0]) |
| 35 | + loss = float(s[-3].split(' ')[1]) |
| 36 | + if clustering: |
| 37 | + data.setdefault(epoch, {}).setdefault('loss-clustering', []).append(loss) |
| 38 | + #data[epoch].setdefault('test-top3-clustering', []).append(top_3) |
| 39 | + else: |
| 40 | + data.setdefault(epoch, {}).setdefault('loss', []).append(loss) |
| 41 | + #data[epoch].setdefault('test-top3', []).append(top_3) |
| 42 | + |
| 43 | + if len(data[epoch].get('loss-clustering', [])) == 1612 and clustering: |
| 44 | + epoch += 1 |
| 45 | + clustering = False |
| 46 | + |
| 47 | + return data |
| 48 | + |
| 49 | +def avg(_list): |
| 50 | + return sum(_list) / len(_list) |
| 51 | + |
| 52 | +def average_epochs(data): |
| 53 | + for epoch, d in data.items(): |
| 54 | + d['loss'] = avg(d['loss']) |
| 55 | + #d['test-top3'] = avg(d['test-top3']) |
| 56 | + if 'loss-clustering' in d: |
| 57 | + d['loss-clustering'] = avg(d['loss-clustering']) |
| 58 | + #d['test-top3-clustering'] = avg(d['test-top3-clustering']) |
| 59 | + return data |
| 60 | + |
| 61 | +def get_all_val_data(fn): |
| 62 | + data = extract_val_results(fn) |
| 63 | + average_epochs(data) |
| 64 | + return data |
| 65 | + |
| 66 | +def get_all_training_data(fn): |
| 67 | + data = extract_training_results(fn) |
| 68 | + average_epochs(data) |
| 69 | + return data |
| 70 | + |
| 71 | +if __name__ == '__main__': |
| 72 | + filenames = ( |
| 73 | + ('plots/9_clients_7_frames_iid.png', '../9_clients_7_frames/raw/logs_iid/{}', 'sec_agg.log', 9), |
| 74 | + ('plots/9_clients_7_frames_non_iid.png', '../9_clients_7_frames/raw/logs_non_iid/{}', 'sec_agg.log', 9), |
| 75 | + ('plots/5_clients_7_frames_iid.png', '../9_clients_7_frames/raw/logs_iid/{}', 'sec_agg.log', 5), |
| 76 | + ('plots/5_clients_7_frames_non_iid.png', '../9_clients_7_frames/raw/logs_non_iid/{}', 'sec_agg.log', 5), |
| 77 | + ) |
| 78 | + |
| 79 | + datas = [] |
| 80 | + for name, base_fn, secagg_file, n_clients in filenames: |
| 81 | + datas = [] |
| 82 | + for i in range(n_clients): |
| 83 | + # Training Data |
| 84 | + client_file = f'client_{8004+i}.log' |
| 85 | + client_path = base_fn.format(client_file) |
| 86 | + training_data = get_all_training_data(client_path) |
| 87 | + datas.append((deepcopy(training_data), f'training-loss-client_{i}')) |
| 88 | + |
| 89 | + # Validation Data |
| 90 | + secagg_path = base_fn.format(secagg_file) |
| 91 | + validation_data = get_all_val_data(secagg_path) |
| 92 | + datas.append((validation_data, 'validation-loss')) |
| 93 | + |
| 94 | + make_plot(name, datas) |
0 commit comments