-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathforest.py
63 lines (50 loc) · 1.86 KB
/
forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import myutils
import time
import sklearn
from sklearn.ensemble import RandomForestRegressor
MAX_DIST = 1e6
MAKE_TEST_SET = False
def main():
n_entries = 800000
print "loading training data..."
data,target,dummy_ids = myutils.load_data_sparse(max_entries = n_entries, max_features=50)
print "loading test data..."
if MAKE_TEST_SET:
n_test_entries = 320
test_data,ground_truth = myutils.make_test_data_sparse(data,target,
n_entries=n_test_entries)
else:
test_data,dummy_target,test_ids = myutils.load_data_sparse(filename='../data/test.csv',
max_entries = n_entries,
max_features=50)
n_test_entries = len(test_ids)
print "building model..."
model = sklearn.ensemble.RandomForestRegressor(n_estimators=100, n_jobs=-1)
model.fit(data,target)
print "predicting..."
predictions = model.predict(test_data)
if MAKE_TEST_SET:
print "checking predictions..."
dist = 0
for i in xrange(n_test_entries):
p1 = ground_truth[i]
p2 = predictions[i]
dist = dist + myutils.HaversineDistance( p1, p2)
print "Mean haversine distance: %f" % (dist / n_test_entries)
else:
# open file for writing
f = open('out.csv','w')
f.write("\"TRIP_ID\",\"LATITUDE\",\"LONGITUDE\"\n")
for i in xrange(n_test_entries):
# write result
f.write("\"" + test_ids[i] + "\",")
f.write(str(predictions[i,1]))
f.write(",")
f.write(str(predictions[i,0]))
f.write("\n")
# close file
f.close()
if __name__ == '__main__':
t0 = time.time()
main()
print "Elapsed time: %f" % (time.time() - t0)