-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgsVisitorThermo.h
153 lines (136 loc) · 6.19 KB
/
gsVisitorThermo.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/** @file gsVisitorThermo.h
@brief Visitor class for volumetric integration of the thermal stress.
This file is part of the G+Smo library.
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
Author(s):
D. Fusseder (2012 - 2015, TU Kaiserslautern),
A.Shamanskiy (2016 - ...., TU Kaiserslautern)
*/
#pragma once
#include <gsAssembler/gsQuadrature.h>
#include <gsCore/gsFuncData.h>
namespace gismo
{
template <class T>
class gsVisitorThermo
{
public:
gsVisitorThermo(const gsFunctionSet<T> & temperatureField_)
: dim(0), lambda(0), mu(0), thermalExpCoef(0), N_D(0), patch(0),
temperatureField(temperatureField_), paramTemp(0) {}
void initialize(const gsBasisRefs<T> & basisRefs,
const index_t patchIndex,
const gsOptionList & options,
gsQuadRule<T> & rule)
{
// parametric dimension of the first displacement component
dim = basisRefs.front().dim();
// a quadrature rule is defined by the basis for the first displacement component.
rule = gsQuadrature::get(basisRefs.front(), options);
// saving necessary info
patch = patchIndex;
paramTemp = options.getSwitch("ParamTemp");
thermalExpCoef = options.getReal("ThExpCoef");
T E = options.getReal("YoungsModulus");
T pr = options.getReal("PoissonsRatio");
lambda = E * pr / ( ( 1. + pr ) * ( 1. - 2. * pr ) );
mu = E / ( 2. * ( 1. + pr ) );
// resize containers for global indices
globalIndices.resize(dim);
blockNumbers.resize(dim);
}
inline void evaluate(const gsBasisRefs<T> & basisRefs,
const gsGeometry<T> & geo,
const gsMatrix<T> & quNodes)
{
// store quadrature points of the element for geometry evaluation
md.points = quNodes;
// NEED_VALUE to get points in the physical domain for evaluation of the temperature gradients
// NEED_MEASURE to get the Jacobian determinant values for integration
// NEED_GRAD_TRANSFORM to get the Jacobian matrix to transform temperature gradient from the parametric to physical domain
if (paramTemp)
md.flags = NEED_MEASURE | NEED_GRAD_TRANSFORM;
else
md.flags = NEED_VALUE | NEED_MEASURE;
// Compute image of the quadrature points plus gradient, jacobian and other necessary data
geo.computeMap(md);
// Compute temperature gradients
if (paramTemp) // evaluate gradients in the parametric domain
temperatureField.piece(patch).deriv_into(quNodes,tempGrads);
else // evaluate gradients in the physical domain
temperatureField.piece(patch).deriv_into(md.values[0],tempGrads);
// find local indices of the displacement basis functions active on the element
basisRefs.front().active_into(quNodes.col(0),localIndicesDisp);
N_D = localIndicesDisp.rows();
// Evaluate displacement basis functions on the element
basisRefs.front().eval_into(quNodes,basisValuesDisp);
}
inline void assemble(gsDomainIterator<T> & element,
const gsVector<T> & quWeights)
{
GISMO_UNUSED(element);
// Initialize local matrix/rhs
localRhs.setZero(dim*N_D, 1);
// Loop over the quadrature nodes
for (index_t q = 0; q < quWeights.rows(); ++q)
{
// Multiply quadrature weight by the geometry measure
const T weight = thermalExpCoef*(2*mu+dim*lambda)*quWeights[q]*md.measure(q);
if (paramTemp) // transform temperature gradients to the physical domain
{
// temperature gradient at one point in the physical domain, dim x 1
transformGradients(md,q,tempGrads,physGrad);
for (index_t d = 0; d < dim; ++d)
localRhs.middleRows(d*N_D,N_D).noalias() -= weight * physGrad(d,0) * basisValuesDisp.col(q);
}
else // use temperature gradients as they are
for (index_t d = 0; d < dim; ++d)
localRhs.middleRows(d*N_D,N_D).noalias() -= weight * tempGrads(d,q) * basisValuesDisp.col(q);
}
}
inline void localToGlobal(const int patchIndex,
const std::vector<gsMatrix<T> > & eliminatedDofs,
gsSparseSystem<T> & system)
{
GISMO_UNUSED(eliminatedDofs);
// computes global indices for displacement components
for (short_t d = 0; d < dim; ++d)
{
system.mapColIndices(localIndicesDisp, patchIndex, globalIndices[d], d);
blockNumbers.at(d) = d;
}
// push to global system
system.pushToRhs(localRhs,globalIndices,blockNumbers);
}
protected:
// problem info
short_t dim;
// Lame and thermal expansion coefficients
T lambda, mu, thermalExpCoef;
// geometry mapping
gsMapData<T> md;
// local components of the global linear system
gsMatrix<T> localRhs;
// local indices (at the current patch) of the displacement basis functions active at the current element
gsMatrix<index_t> localIndicesDisp;
// number of displacement basis functions active at the current element
index_t N_D;
// values of displacement basis functions at quadrature points at the current element stored as a N_D x numQuadPoints matrix;
gsMatrix<T> basisValuesDisp;
// Temperature info
index_t patch;
const gsFunctionSet<T> & temperatureField;
// true if temperature field is defined in the parametric domain; false if in the physical
bool paramTemp;
// temperature gradient evaluated at the quadrature points or at their images in the physical domain;
// stored as a dim x numQuadPoints matrix
gsMatrix<T> tempGrads;
// all temporary matrices defined here for efficiency
gsMatrix<T> physGrad;
// containers for global indices
std::vector< gsMatrix<index_t> > globalIndices;
gsVector<index_t> blockNumbers;
}; //class definition ends
} // namespace ends