-
Notifications
You must be signed in to change notification settings - Fork 86
Erdos 43 #307
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Erdos 43 #307
Changes from 4 commits
4c87eae
42ef9ec
fdd33e8
8c0e1a5
2d87566
4ed0afb
35b40cf
747be5f
c6e7ecc
815e023
751efab
ed2cf46
a6e0082
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| @@ -0,0 +1,81 @@ | ||||||||||||||
| /- | ||||||||||||||
| Copyright 2025 The Formal Conjectures Authors. | ||||||||||||||
|
|
||||||||||||||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||||||||||||||
| you may not use this file except in compliance with the License. | ||||||||||||||
| You may obtain a copy of the License at | ||||||||||||||
|
|
||||||||||||||
| https://www.apache.org/licenses/LICENSE-2.0 | ||||||||||||||
|
|
||||||||||||||
| Unless required by applicable law or agreed to in writing, software | ||||||||||||||
| distributed under the License is distributed on an "AS IS" BASIS, | ||||||||||||||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||||||||||
| See the License for the specific language governing permissions and | ||||||||||||||
| limitations under the License. | ||||||||||||||
| -/ | ||||||||||||||
|
|
||||||||||||||
| import FormalConjectures.Util.ProblemImports | ||||||||||||||
|
|
||||||||||||||
| /-! | ||||||||||||||
| # Erdős Problem 43: Disjoint Differences in Sidon Sets | ||||||||||||||
|
|
||||||||||||||
| Let `f(N)` denote the maximum possible size of a Sidon set in `{1, ..., N}`. | ||||||||||||||
|
|
||||||||||||||
| Suppose `A, B ⊆ {1, ..., N}` are both Sidon sets and their difference sets are disjoint: | ||||||||||||||
| \[ | ||||||||||||||
| (A - A) ∩ (B - B) = ∅ | ||||||||||||||
| \] | ||||||||||||||
|
|
||||||||||||||
| Is it true that | ||||||||||||||
| \[ | ||||||||||||||
| \binom{|A|}{2} + \binom{|B|}{2} ≤ \binom{f(N)}{2} + O(1) ? | ||||||||||||||
| \] | ||||||||||||||
|
|
||||||||||||||
| Furthermore, if `|A| = |B|`, can this be improved to | ||||||||||||||
| \[ | ||||||||||||||
| \binom{|A|}{2} + \binom{|B|}{2} ≤ (1 - c) \binom{f(N)}{2} | ||||||||||||||
| \] | ||||||||||||||
| for some constant `c > 0`? | ||||||||||||||
|
|
||||||||||||||
| Find the link to the problem [here](https://www.erdosproblems.com/43). | ||||||||||||||
|
|
||||||||||||||
| -/ | ||||||||||||||
|
|
||||||||||||||
| /-- The maximum size of a Sidon set in `{1, ..., N}`. -/ | ||||||||||||||
| noncomputable def maxSidonSetSize (N : ℕ) : ℕ := | ||||||||||||||
| sSup {n | ∃ A : Finset ℕ, A ⊆ Finset.Icc 1 N ∧ IsSidon A.toSet ∧ A.card = n} | ||||||||||||||
Krishn1412 marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| If `A` and `B` are Sidon sets in `{1, ..., N}` with disjoint difference sets, | ||||||||||||||
| is the sum of unordered pair counts bounded by that of an optimal Sidon set up to `O(1)`? | ||||||||||||||
|
Comment on lines
+29
to
+30
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
Better to stick to the original formulation. |
||||||||||||||
| -/ | ||||||||||||||
| @[category research open, AMS 11 05] | ||||||||||||||
| theorem erdos_43 : | ||||||||||||||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. since this is phrased as a questions, we should wrap the entire statement in parenthesis and write |
||||||||||||||
| ∃ C : ℝ, ∀ (N : ℕ) (A B : Finset ℕ), | ||||||||||||||
| A ⊆ Finset.Icc 1 N → | ||||||||||||||
| B ⊆ Finset.Icc 1 N → | ||||||||||||||
| IsSidon A.toSet → | ||||||||||||||
| IsSidon B.toSet → | ||||||||||||||
| (A ×ˢ A).image (λ p => p.1 - p.2) ∩ | ||||||||||||||
| (B ×ˢ B).image (λ p => p.1 - p.2) = ∅ → | ||||||||||||||
Krishn1412 marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||||||||||
| ((A.card * (A.card - 1) + B.card * (B.card - 1)) / 2 : ℝ) ≤ | ||||||||||||||
| (maxSidonSetSize N * (maxSidonSetSize N - 1) / 2 : ℝ) + C := by | ||||||||||||||
mo271 marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||||||||||
| sorry | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| If `A` and `B` are equal-sized Sidon sets with disjoint difference sets, | ||||||||||||||
| can the sum of pair counts be bounded by a strict fraction of the optimum? | ||||||||||||||
| -/ | ||||||||||||||
| @[category research open, AMS 11 05] | ||||||||||||||
| theorem erdos_43_equal_size : | ||||||||||||||
| ∃ c : ℝ, 0 < c ∧ ∀ (N : ℕ) (A B : Finset ℕ), | ||||||||||||||
mo271 marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||||||||||
| A ⊆ Finset.Icc 1 N → | ||||||||||||||
| B ⊆ Finset.Icc 1 N → | ||||||||||||||
| IsSidon A.toSet → | ||||||||||||||
| IsSidon B.toSet → | ||||||||||||||
| A.card = B.card → | ||||||||||||||
| (A ×ˢ A).image (λ p => p.1 - p.2) ∩ | ||||||||||||||
| (B ×ˢ B).image (λ p => p.1 - p.2) = ∅ → | ||||||||||||||
| ((A.card * (A.card - 1) + B.card * (B.card - 1)) / 2 : ℝ) ≤ | ||||||||||||||
| (1 - c) * (maxSidonSetSize N * (maxSidonSetSize N - 1) / 2 : ℝ) := by | ||||||||||||||
mo271 marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||||||||||
| sorry | ||||||||||||||
Uh oh!
There was an error while loading. Please reload this page.