diff --git a/edward2/tensorflow/constraints.py b/edward2/tensorflow/constraints.py index 5d9fa6ea..c62ca3ea 100644 --- a/edward2/tensorflow/constraints.py +++ b/edward2/tensorflow/constraints.py @@ -84,7 +84,6 @@ def serialize(initializer): def deserialize(config, custom_objects=None): return tf.keras.utils.deserialize_keras_object( config, - module_objects=globals(), custom_objects=custom_objects, printable_module_name='constraints') diff --git a/edward2/tensorflow/initializers.py b/edward2/tensorflow/initializers.py index f562df7a..73e9687d 100644 --- a/edward2/tensorflow/initializers.py +++ b/edward2/tensorflow/initializers.py @@ -138,8 +138,7 @@ def __init__(self, distribution: Random distribution to use. One of "truncated_normal", or "untruncated_normal". seed: A Python integer. Used to create random seeds. See - `tf.set_random_seed` - for behavior. + `tf.set_random_seed` for behavior. Raises: ValueError: In case of an invalid value for the "scale", mode" or @@ -529,7 +528,9 @@ def get_config(self): class TrainableHeNormal(TrainableNormal): - """Trainable normal initialized per He et al. 2015, given a ReLU nonlinearity. + """Trainable normal initialized per He et al. + + 2015, given a ReLU nonlinearity. The distribution is initialized to a Normal scaled by `sqrt(2 / fan_in)`, where `fan_in` is the number of input units. A ReLU nonlinearity is assumed @@ -857,7 +858,6 @@ def serialize(initializer): def deserialize(config, custom_objects=None): return tf.keras.utils.deserialize_keras_object( config, - module_objects=globals(), custom_objects=custom_objects, printable_module_name='initializers') diff --git a/edward2/tensorflow/regularizers.py b/edward2/tensorflow/regularizers.py index 1a404464..16183120 100644 --- a/edward2/tensorflow/regularizers.py +++ b/edward2/tensorflow/regularizers.py @@ -394,7 +394,6 @@ def serialize(initializer): def deserialize(config, custom_objects=None): return tf.keras.utils.deserialize_keras_object( config, - module_objects=globals(), custom_objects=custom_objects, printable_module_name='regularizers')