-
Notifications
You must be signed in to change notification settings - Fork 536
/
Copy pathweights.h
421 lines (369 loc) · 17.9 KB
/
weights.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_
#define THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_
#include <stddef.h>
#include "compression/compress.h"
#include "gemma/common.h"
#include "gemma/configs.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
namespace gcpp {
template <class TConfig>
struct CompressedLayer {
// No ctor/dtor, allocated via AllocateAligned.
using Weight = typename TConfig::Weight;
// If weights are f32, also f32; otherwise at least bf16. Useful for ops that
// do not yet support smaller compressed types, or require at least bf16. When
// weights are f32, we also want such tensors to be f32.
using WeightF32OrBF16 =
hwy::If<hwy::IsSame<Weight, float>(), float, hwy::bfloat16_t>;
static constexpr size_t kHeads = TConfig::kHeads;
static constexpr size_t kKVHeads = TConfig::kKVHeads;
static constexpr size_t kModelDim = TConfig::kModelDim;
static constexpr size_t kQKVDim = TConfig::kQKVDim;
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
static constexpr size_t kAttVecEinsumWSize = kHeads * kQKVDim * kModelDim;
static constexpr size_t kQKVEinsumWSize =
(kHeads + 2 * kKVHeads) * kQKVDim * kModelDim;
// 2x for (gelu gating vector, gated vector)
static constexpr size_t kGatingEinsumWSize = 2 * kFFHiddenDim * kModelDim;
static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
static constexpr bool kFFBiases = TConfig::kFFBiases;
static constexpr PostNormType kPostNorm = TConfig::kPostNorm;
static constexpr size_t kAOBiasDim =
TConfig::kSoftmaxAttnOutputBiases ? kModelDim : 0;
static constexpr size_t kGriffinDim =
TConfig::kGriffinLayers > 0 ? kModelDim : 0;
template <class T, size_t N>
using ArrayT = CompressedArray<T, N>;
union {
struct {
ArrayT<Weight, kAttVecEinsumWSize> attn_vec_einsum_w;
ArrayT<Weight, kQKVEinsumWSize> qkv_einsum_w;
ArrayT<float, kAOBiasDim> attention_output_biases;
};
struct {
ArrayT<Weight, kGriffinDim * kGriffinDim> linear_x_w;
ArrayT<float, kGriffinDim> linear_x_biases;
ArrayT<Weight, kGriffinDim * kGriffinDim> linear_y_w;
ArrayT<float, kGriffinDim> linear_y_biases;
ArrayT<Weight, kGriffinDim * kGriffinDim> linear_out_w;
ArrayT<float, kGriffinDim> linear_out_biases;
ArrayT<float, kConv1dWidth * kGriffinDim> conv_w;
ArrayT<float, kGriffinDim> conv_biases;
ArrayT<Weight, kGriffinDim * kGriffinDim / kHeads * 2> gate_w;
ArrayT<float, kGriffinDim * 2> gate_biases;
ArrayT<float, kGriffinDim> a;
} griffin;
};
ArrayT<Weight, kGatingEinsumWSize> gating_einsum_w;
ArrayT<Weight, kModelDim * kFFHiddenDim> linear_w;
// We don't yet have an RMSNorm that accepts all Weight.
ArrayT<WeightF32OrBF16, kModelDim> pre_attention_norm_scale;
ArrayT<WeightF32OrBF16, kModelDim> pre_ffw_norm_scale;
ArrayT<WeightF32OrBF16, kPostNorm == PostNormType::Scale ? kModelDim : 0>
post_attention_norm_scale;
ArrayT<WeightF32OrBF16, kPostNorm == PostNormType::Scale ? kModelDim : 0>
post_ffw_norm_scale;
ArrayT<float, kFFBiases ? 2 * kFFHiddenDim : 0> ffw_gating_biases;
ArrayT<float, kFFBiases ? kModelDim : 0> ffw_output_biases;
};
// Array instead of single large allocation for parallel mem init. Split out
// of CompressedWeights so that only these pointers are initialized, not the
// CompressedArray.
template <class TConfig>
struct CompressedLayerPointers {
explicit CompressedLayerPointers(hwy::ThreadPool& pool) {
pool.Run(0, TConfig::kLayers, [this](uint64_t task, size_t /*thread*/) {
this->c_layers[task] = hwy::AllocateAligned<CompressedLayer<TConfig>>(1);
});
}
using CLayer = CompressedLayer<TConfig>;
std::array<hwy::AlignedFreeUniquePtr<CLayer[]>, TConfig::kLayers> c_layers;
};
template <class TConfig, typename = void>
struct CompressedWeights {
// Must be allocated via AllocateAligned and initialized with placement new.
void* operator new(size_t, void* addr) { return addr; }
void* operator new(size_t) = delete;
void* operator new[](size_t) = delete;
void operator delete(void*) = delete;
void operator delete[](void*) = delete;
using Weight = typename TConfig::Weight;
using WeightF32OrInputT =
hwy::If<hwy::IsSame<Weight, float>(), float, EmbedderInputT>;
CompressedArray<WeightF32OrInputT, TConfig::kVocabSize * TConfig::kModelDim>
embedder_input_embedding;
using WeightF32OrBF16 =
hwy::If<hwy::IsSame<Weight, float>(), float, hwy::bfloat16_t>;
CompressedArray<WeightF32OrBF16, TConfig::kModelDim> final_norm_scale;
// Must be last so that the other arrays remain aligned.
CompressedLayerPointers<TConfig> c_layer_ptrs;
explicit CompressedWeights(hwy::ThreadPool& pool) : c_layer_ptrs(pool) {}
void ZeroInit() {
hwy::ZeroBytes(&embedder_input_embedding, sizeof(embedder_input_embedding));
hwy::ZeroBytes(&final_norm_scale, sizeof(final_norm_scale));
for (int i = 0; i < TConfig::kLayers; ++i) {
hwy::ZeroBytes(GetLayer(i), sizeof(*GetLayer(i)));
}
}
const CompressedLayer<TConfig>* GetLayer(size_t layer) const {
return c_layer_ptrs.c_layers[layer].get();
}
CompressedLayer<TConfig>* GetLayer(size_t layer) {
return c_layer_ptrs.c_layers[layer].get();
}
};
// ----------------------------------------------------------------------------
// Interface
template <typename TConfig>
struct AllocateCompressedWeights {
ByteStorageT operator()(hwy::ThreadPool& pool) const {
using TWeights = CompressedWeights<TConfig>;
ByteStorageT weights_u8 = AllocateSizeof<TWeights>();
TWeights* weights = reinterpret_cast<TWeights*>(weights_u8.get());
new (weights) TWeights(pool);
return weights_u8;
}
};
template <typename TConfig>
struct ZeroInitCompressedWeights {
void operator()(ByteStorageT& weights_u8, hwy::ThreadPool& pool) const {
CompressedWeights<TConfig>& weights =
*reinterpret_cast<CompressedWeights<TConfig>*>(weights_u8.get());
weights.ZeroInit();
}
};
// TODO: also add RandInitCompressedWeights
template <class TConfig>
struct DeleteCompressedWeights {
void operator()(ByteStorageT& weights_u8) const {
CompressedWeights<TConfig>& weights =
*reinterpret_cast<CompressedWeights<TConfig>*>(weights_u8.get());
weights.~CompressedWeights<TConfig>();
}
};
ByteStorageT LoadCompressedWeights(const Path& weights, Model model_type,
Type weight_type, hwy::ThreadPool& pool);
void LogWeightStats(Model model, Type weight_type, const ByteStorageT& weights);
// ----------------------------------------------------------------------------
// Iterators
// We rely on `if constexpr` to ensure raw_weights->member is only compiled
// when valid, i.e., kHaveRaw == true, but the IDE analysis does not understand
// this, hence hide the member access from it.
#if HWY_IDE
#define GEMMA_MEMBER(aggregate, member) nullptr
#else
#define GEMMA_MEMBER(aggregate, member) aggregate->member
#endif
// Used by ForEachTensor for tensors that are not in a layer.
#define GEMMA_CALL_TOP_FUNC(name, member) \
{ \
const float* raw_tensor = nullptr; \
if constexpr (kHaveRaw) { \
raw_tensor = GEMMA_MEMBER(raw_weights, member.data()); \
} \
func(name, raw_tensor, c_weights.member); \
}
// Used by ForEachTensor for per-layer tensors. Writes into name_buf.
#define GEMMA_CALL_FUNC(name, member) \
snprintf(name_buf, sizeof(name_buf), name "_%d", layer_idx); \
{ \
const float* raw_tensor = nullptr; \
if constexpr (kHaveRaw) { \
raw_tensor = GEMMA_MEMBER(raw_layer, member.data()); \
} \
func(name_buf, raw_tensor, c_layer->member); \
}
// Calls func(name, float*, CompressedArray&) for each tensor. float* is
// null if raw_weights is nullptr, e.g., when loading weights from BlobStore.
// Otherwise, RawLayer must be specified and we pass a float* pointing to the
// raw float weights for that tensor for use by compress_weights.cc.
//
// This avoids repeating the list of tensors between loading and compressing,
// while also avoiding dependency on raw_weights.h.
template <class TConfig, class RawLayer = void, class RawWeightsPtr, class Func>
void ForEachTensor(RawWeightsPtr raw_weights,
CompressedWeights<TConfig>& c_weights, Func& func) {
constexpr bool kHaveRaw = !hwy::IsSame<RawWeightsPtr, std::nullptr_t>();
GEMMA_CALL_TOP_FUNC("c_embedding", embedder_input_embedding);
GEMMA_CALL_TOP_FUNC("c_final_norm", final_norm_scale);
char name_buf[16];
for (int layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
auto type = TConfig::kLayerConfig[layer_idx];
const size_t idx = static_cast<size_t>(layer_idx);
const RawLayer* raw_layer = nullptr;
if constexpr (kHaveRaw) {
raw_layer = raw_weights->GetLayer(idx);
}
CompressedLayer<TConfig>* c_layer = c_weights.GetLayer(idx);
GEMMA_CALL_FUNC("pre_ff_ns", pre_ffw_norm_scale);
GEMMA_CALL_FUNC("gating_ein", gating_einsum_w);
GEMMA_CALL_FUNC("linear_w", linear_w);
if (type == LayerAttentionType::kGemma) {
GEMMA_CALL_FUNC("qkv_ein", qkv_einsum_w);
GEMMA_CALL_FUNC("att_ein", attn_vec_einsum_w);
} else {
GEMMA_CALL_FUNC("gr_lin_x_w", griffin.linear_x_w);
GEMMA_CALL_FUNC("gr_lin_x_b", griffin.linear_x_biases);
GEMMA_CALL_FUNC("gr_lin_y_w", griffin.linear_y_w);
GEMMA_CALL_FUNC("gr_lin_y_b", griffin.linear_y_biases);
GEMMA_CALL_FUNC("gr_lin_out_w", griffin.linear_out_w);
GEMMA_CALL_FUNC("gr_lin_out_b", griffin.linear_out_biases);
GEMMA_CALL_FUNC("gr_conv_w", griffin.conv_w);
GEMMA_CALL_FUNC("gr_conv_b", griffin.conv_biases);
GEMMA_CALL_FUNC("gr_gate_w", griffin.gate_w);
GEMMA_CALL_FUNC("gr_gate_b", griffin.gate_biases);
GEMMA_CALL_FUNC("gr_a", griffin.a);
}
GEMMA_CALL_FUNC("pre_att_ns", pre_attention_norm_scale);
if (TConfig::kPostNorm == PostNormType::Scale) {
GEMMA_CALL_FUNC("post_att_ns", post_attention_norm_scale);
GEMMA_CALL_FUNC("post_ff_ns", post_ffw_norm_scale);
}
if (TConfig::kFFBiases) {
GEMMA_CALL_FUNC("ffw_gat_b", ffw_gating_biases);
GEMMA_CALL_FUNC("ffw_out_b", ffw_output_biases);
}
if (TConfig::kSoftmaxAttnOutputBiases &&
type == LayerAttentionType::kGemma) {
GEMMA_CALL_FUNC("attn_ob", attention_output_biases);
}
}
#undef GEMMA_CALL_FUNC
#undef GEMMA_CALL_TOP_FUNC
} // ForEachTensor
#define GEMMA_CALL_TOP_FUNC1(name, member) func(name, weights1.member)
#define GEMMA_CALL_TOP_FUNC2(name, member) \
func(name, weights1.member, weights2.member)
#define GEMMA_CALL_TOP_FUNC3(name, member) \
func(name, weights1.member, weights2.member, weights3.member)
#define GEMMA_CALL_TOP_FUNC4(name, member) \
func(name, weights1.member, weights2.member, \
weights3.member, weights4.member)
#define GEMMA_CALL_LAYER_FUNC1(name, member) \
snprintf(name_buf, sizeof(name_buf), name "_%d", layer_idx); \
func(name_buf, layer1.member)
#define GEMMA_CALL_LAYER_FUNC2(name, member) \
snprintf(name_buf, sizeof(name_buf), name "_%d", layer_idx); \
func(name_buf, layer1.member, layer2.member)
#define GEMMA_CALL_LAYER_FUNC3(name, member) \
snprintf(name_buf, sizeof(name_buf), name "_%d", layer_idx); \
func(name_buf, layer1.member, layer2.member, layer3.member)
#define GEMMA_CALL_LAYER_FUNC4(name, member) \
snprintf(name_buf, sizeof(name_buf), name "_%d", layer_idx); \
func(name_buf, layer1.member, layer2.member, layer3.member, layer4.member)
#define GEMMA_CALL_ALL_LAYER_FUNC(N) \
if (type == LayerAttentionType::kGemma) { \
GEMMA_CALL_LAYER_FUNC ## N("att_ein", attn_vec_einsum_w); \
GEMMA_CALL_LAYER_FUNC ## N("qkv_ein", qkv_einsum_w); \
} else { \
GEMMA_CALL_LAYER_FUNC ## N("gr_lin_x_w", griffin.linear_x_w); \
GEMMA_CALL_LAYER_FUNC ## N("gr_lin_x_b", griffin.linear_x_biases); \
GEMMA_CALL_LAYER_FUNC ## N("gr_lin_y_w", griffin.linear_y_w); \
GEMMA_CALL_LAYER_FUNC ## N("gr_lin_y_b", griffin.linear_y_biases); \
GEMMA_CALL_LAYER_FUNC ## N("gr_lin_out_w", griffin.linear_out_w); \
GEMMA_CALL_LAYER_FUNC ## N("gr_lin_out_b", griffin.linear_out_biases); \
GEMMA_CALL_LAYER_FUNC ## N("gr_conv_w", griffin.conv_w); \
GEMMA_CALL_LAYER_FUNC ## N("gr_conv_b", griffin.conv_biases); \
GEMMA_CALL_LAYER_FUNC ## N("gr_gate_w", griffin.gate_w); \
GEMMA_CALL_LAYER_FUNC ## N("gr_gate_b", griffin.gate_biases); \
GEMMA_CALL_LAYER_FUNC ## N("gr_a", griffin.a); \
} \
GEMMA_CALL_LAYER_FUNC ## N("gating_ein", gating_einsum_w); \
GEMMA_CALL_LAYER_FUNC ## N("linear_w", linear_w); \
GEMMA_CALL_LAYER_FUNC ## N("pre_att_ns", pre_attention_norm_scale); \
if (TConfig::kPostNorm == PostNormType::Scale) { \
GEMMA_CALL_LAYER_FUNC ## N("post_att_ns", post_attention_norm_scale); \
GEMMA_CALL_LAYER_FUNC ## N("post_ff_ns", post_ffw_norm_scale); \
} \
GEMMA_CALL_LAYER_FUNC ## N("pre_ff_ns", pre_ffw_norm_scale); \
if (TConfig::kFFBiases) { \
GEMMA_CALL_LAYER_FUNC ## N("ffw_gat_b", ffw_gating_biases); \
GEMMA_CALL_LAYER_FUNC ## N("ffw_out_b", ffw_output_biases); \
} \
if (TConfig::kSoftmaxAttnOutputBiases && \
type == LayerAttentionType::kGemma) { \
GEMMA_CALL_LAYER_FUNC ## N("attn_ob", attention_output_biases); \
}
template <typename TConfig, class Func>
void ForEachTensor1(Func& func, const CompressedWeights<TConfig>& weights1) {
GEMMA_CALL_TOP_FUNC1("embedding", embedder_input_embedding);
GEMMA_CALL_TOP_FUNC1("final_norm", final_norm_scale);
char name_buf[16];
for (int layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
auto type = TConfig::kLayerConfig[layer_idx];
const size_t idx = static_cast<size_t>(layer_idx);
const CompressedLayer<TConfig>& layer1 = *weights1.GetLayer(idx);
GEMMA_CALL_ALL_LAYER_FUNC(1)
}
}
template <typename TConfig, class Func>
void ForEachTensor1(Func& func, CompressedWeights<TConfig>& weights1) {
GEMMA_CALL_TOP_FUNC1("embedding", embedder_input_embedding);
GEMMA_CALL_TOP_FUNC1("final_norm", final_norm_scale);
char name_buf[16];
for (int layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
auto type = TConfig::kLayerConfig[layer_idx];
const size_t idx = static_cast<size_t>(layer_idx);
CompressedLayer<TConfig>& layer1 = *weights1.GetLayer(idx);
GEMMA_CALL_ALL_LAYER_FUNC(1)
}
}
template <typename TConfig, class Func>
void ForEachTensor2(Func& func, const CompressedWeights<TConfig>& weights1,
CompressedWeights<TConfig>& weights2) {
GEMMA_CALL_TOP_FUNC2("embedding", embedder_input_embedding);
GEMMA_CALL_TOP_FUNC2("final_norm", final_norm_scale);
char name_buf[16];
for (int layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
auto type = TConfig::kLayerConfig[layer_idx];
const size_t idx = static_cast<size_t>(layer_idx);
const CompressedLayer<TConfig>& layer1 = *weights1.GetLayer(idx);
CompressedLayer<TConfig>& layer2 = *weights2.GetLayer(idx);
GEMMA_CALL_ALL_LAYER_FUNC(2)
}
}
template <typename TConfig, class Func>
void ForEachTensor4(Func& func, const CompressedWeights<TConfig>& weights1,
CompressedWeights<TConfig>& weights2,
CompressedWeights<TConfig>& weights3,
CompressedWeights<TConfig>& weights4) {
GEMMA_CALL_TOP_FUNC4("embedding", embedder_input_embedding);
GEMMA_CALL_TOP_FUNC4("final_norm", final_norm_scale);
char name_buf[16];
for (int layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
auto type = TConfig::kLayerConfig[layer_idx];
const size_t idx = static_cast<size_t>(layer_idx);
const CompressedLayer<TConfig>& layer1 = *weights1.GetLayer(idx);
CompressedLayer<TConfig>& layer2 = *weights2.GetLayer(idx);
CompressedLayer<TConfig>& layer3 = *weights3.GetLayer(idx);
CompressedLayer<TConfig>& layer4 = *weights4.GetLayer(idx);
GEMMA_CALL_ALL_LAYER_FUNC(4)
}
}
#undef GEMMA_CALL_TOP_FUNC1
#undef GEMMA_CALL_TOP_FUNC2
#undef GEMMA_CALL_TOP_FUNC3
#undef GEMMA_CALL_TOP_FUNC4
#undef GEMMA_CALL_LAYER_FUNC1
#undef GEMMA_CALL_LAYER_FUNC2
#undef GEMMA_CALL_LAYER_FUNC3
#undef GEMMA_CALL_LAYER_FUNC4
#undef GEMMA_CALL_ALL_LAYER_FUNC
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_