|
| 1 | +# based on Baichuan2 code |
| 2 | + |
| 3 | +import fire |
| 4 | +import json |
| 5 | +import torch |
| 6 | +import streamlit as st |
| 7 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 8 | +from transformers.generation.utils import GenerationConfig |
| 9 | + |
| 10 | + |
| 11 | +st.set_page_config(page_title="LLM utils") |
| 12 | +st.title("LLM utils") |
| 13 | + |
| 14 | + |
| 15 | +@st.cache_resource |
| 16 | +def init_model(base_model): |
| 17 | + model = AutoModelForCausalLM.from_pretrained( |
| 18 | + base_model, |
| 19 | + torch_dtype=torch.float16, |
| 20 | + device_map="auto", |
| 21 | + trust_remote_code=True |
| 22 | + ) |
| 23 | + model.generation_config = GenerationConfig.from_pretrained( |
| 24 | + base_model |
| 25 | + ) |
| 26 | + tokenizer = AutoTokenizer.from_pretrained( |
| 27 | + base_model, |
| 28 | + use_fast=False, |
| 29 | + trust_remote_code=True |
| 30 | + ) |
| 31 | + return model, tokenizer |
| 32 | + |
| 33 | + |
| 34 | +def clear_chat_history(): |
| 35 | + del st.session_state.messages |
| 36 | + |
| 37 | + |
| 38 | +def init_chat_history(): |
| 39 | + if "messages" in st.session_state: |
| 40 | + for message in st.session_state.messages: |
| 41 | + avatar = '🧑' if message["role"] == "user" else '🤖' |
| 42 | + with st.chat_message(message["role"], avatar=avatar): |
| 43 | + st.markdown(message["content"]) |
| 44 | + else: |
| 45 | + st.session_state.messages = [] |
| 46 | + |
| 47 | + return st.session_state.messages |
| 48 | + |
| 49 | + |
| 50 | +def main( |
| 51 | + base_model: str = "" |
| 52 | + ): |
| 53 | + |
| 54 | + assert ( |
| 55 | + base_model |
| 56 | + ), "Please specify a --base_model" |
| 57 | + |
| 58 | + model, tokenizer = init_model(base_model) |
| 59 | + messages = init_chat_history() |
| 60 | + |
| 61 | + if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"): |
| 62 | + with st.chat_message("user", avatar='🧑'): |
| 63 | + st.markdown(prompt) |
| 64 | + messages.append({"role": "user", "content": prompt}) |
| 65 | + print(f"[user] {prompt}", flush=True) |
| 66 | + with st.chat_message("assistant", avatar='🤖'): |
| 67 | + placeholder = st.empty() |
| 68 | + for response in model.chat(tokenizer, messages, stream=True): |
| 69 | + placeholder.markdown(response) |
| 70 | + if torch.backends.mps.is_available(): |
| 71 | + torch.mps.empty_cache() |
| 72 | + messages.append({"role": "assistant", "content": response}) |
| 73 | + print(json.dumps(messages, ensure_ascii=False), flush=True) |
| 74 | + |
| 75 | + st.button("清空对话", on_click=clear_chat_history) |
| 76 | + |
| 77 | +if __name__ == "__main__": |
| 78 | + fire.Fire(main) |
0 commit comments