-
Notifications
You must be signed in to change notification settings - Fork 543
/
Copy pathinterval_tree_test.c
348 lines (271 loc) · 8.17 KB
/
interval_tree_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/interval_tree.h>
#include <linux/prandom.h>
#include <linux/slab.h>
#include <asm/timex.h>
#include <linux/bitmap.h>
#include <linux/maple_tree.h>
#define __param(type, name, init, msg) \
static type name = init; \
module_param(name, type, 0444); \
MODULE_PARM_DESC(name, msg);
__param(int, nnodes, 100, "Number of nodes in the interval tree");
__param(int, perf_loops, 1000, "Number of iterations modifying the tree");
__param(int, nsearches, 100, "Number of searches to the interval tree");
__param(int, search_loops, 1000, "Number of iterations searching the tree");
__param(bool, search_all, false, "Searches will iterate all nodes in the tree");
__param(uint, max_endpoint, ~0, "Largest value for the interval's endpoint");
__param(ullong, seed, 3141592653589793238ULL, "Random seed");
static struct rb_root_cached root = RB_ROOT_CACHED;
static struct interval_tree_node *nodes = NULL;
static u32 *queries = NULL;
static struct rnd_state rnd;
static inline unsigned long
search(struct rb_root_cached *root, unsigned long start, unsigned long last)
{
struct interval_tree_node *node;
unsigned long results = 0;
for (node = interval_tree_iter_first(root, start, last); node;
node = interval_tree_iter_next(node, start, last))
results++;
return results;
}
static void init(void)
{
int i;
for (i = 0; i < nnodes; i++) {
u32 b = (prandom_u32_state(&rnd) >> 4) % max_endpoint;
u32 a = (prandom_u32_state(&rnd) >> 4) % b;
nodes[i].start = a;
nodes[i].last = b;
}
/*
* Limit the search scope to what the user defined.
* Otherwise we are merely measuring empty walks,
* which is pointless.
*/
for (i = 0; i < nsearches; i++)
queries[i] = (prandom_u32_state(&rnd) >> 4) % max_endpoint;
}
static int basic_check(void)
{
int i, j;
cycles_t time1, time2, time;
printk(KERN_ALERT "interval tree insert/remove");
init();
time1 = get_cycles();
for (i = 0; i < perf_loops; i++) {
for (j = 0; j < nnodes; j++)
interval_tree_insert(nodes + j, &root);
for (j = 0; j < nnodes; j++)
interval_tree_remove(nodes + j, &root);
}
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" -> %llu cycles\n", (unsigned long long)time);
return 0;
}
static int search_check(void)
{
int i, j;
unsigned long results;
cycles_t time1, time2, time;
printk(KERN_ALERT "interval tree search");
init();
for (j = 0; j < nnodes; j++)
interval_tree_insert(nodes + j, &root);
time1 = get_cycles();
results = 0;
for (i = 0; i < search_loops; i++)
for (j = 0; j < nsearches; j++) {
unsigned long start = search_all ? 0 : queries[j];
unsigned long last = search_all ? max_endpoint : queries[j];
results += search(&root, start, last);
}
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, search_loops);
results = div_u64(results, search_loops);
printk(" -> %llu cycles (%lu results)\n",
(unsigned long long)time, results);
for (j = 0; j < nnodes; j++)
interval_tree_remove(nodes + j, &root);
return 0;
}
static int intersection_range_check(void)
{
int i, j, k;
unsigned long start, last;
struct interval_tree_node *node;
unsigned long *intxn1;
unsigned long *intxn2;
printk(KERN_ALERT "interval tree iteration\n");
intxn1 = bitmap_alloc(nnodes, GFP_KERNEL);
if (!intxn1) {
WARN_ON_ONCE("Failed to allocate intxn1\n");
return -ENOMEM;
}
intxn2 = bitmap_alloc(nnodes, GFP_KERNEL);
if (!intxn2) {
WARN_ON_ONCE("Failed to allocate intxn2\n");
bitmap_free(intxn1);
return -ENOMEM;
}
for (i = 0; i < search_loops; i++) {
/* Initialize interval tree for each round */
init();
for (j = 0; j < nnodes; j++)
interval_tree_insert(nodes + j, &root);
/* Let's try nsearches different ranges */
for (k = 0; k < nsearches; k++) {
/* Try whole range once */
if (!k) {
start = 0UL;
last = ULONG_MAX;
} else {
last = (prandom_u32_state(&rnd) >> 4) % max_endpoint;
start = (prandom_u32_state(&rnd) >> 4) % last;
}
/* Walk nodes to mark intersection nodes */
bitmap_zero(intxn1, nnodes);
for (j = 0; j < nnodes; j++) {
node = nodes + j;
if (start <= node->last && last >= node->start)
bitmap_set(intxn1, j, 1);
}
/* Iterate tree to clear intersection nodes */
bitmap_zero(intxn2, nnodes);
for (node = interval_tree_iter_first(&root, start, last); node;
node = interval_tree_iter_next(node, start, last))
bitmap_set(intxn2, node - nodes, 1);
WARN_ON_ONCE(!bitmap_equal(intxn1, intxn2, nnodes));
}
for (j = 0; j < nnodes; j++)
interval_tree_remove(nodes + j, &root);
}
bitmap_free(intxn1);
bitmap_free(intxn2);
return 0;
}
#ifdef CONFIG_INTERVAL_TREE_SPAN_ITER
/*
* Helper function to get span of current position from maple tree point of
* view.
*/
static void mas_cur_span(struct ma_state *mas, struct interval_tree_span_iter *state)
{
unsigned long cur_start;
unsigned long cur_last;
int is_hole;
if (mas->status == ma_overflow)
return;
/* walk to current position */
state->is_hole = mas_walk(mas) ? 0 : 1;
cur_start = mas->index < state->first_index ?
state->first_index : mas->index;
/* whether we have followers */
do {
cur_last = mas->last > state->last_index ?
state->last_index : mas->last;
is_hole = mas_next_range(mas, state->last_index) ? 0 : 1;
} while (mas->status != ma_overflow && is_hole == state->is_hole);
if (state->is_hole) {
state->start_hole = cur_start;
state->last_hole = cur_last;
} else {
state->start_used = cur_start;
state->last_used = cur_last;
}
/* advance position for next round */
if (mas->status != ma_overflow)
mas_set(mas, cur_last + 1);
}
static int span_iteration_check(void)
{
int i, j, k;
unsigned long start, last;
struct interval_tree_span_iter span, mas_span;
DEFINE_MTREE(tree);
MA_STATE(mas, &tree, 0, 0);
printk(KERN_ALERT "interval tree span iteration\n");
for (i = 0; i < search_loops; i++) {
/* Initialize interval tree for each round */
init();
for (j = 0; j < nnodes; j++)
interval_tree_insert(nodes + j, &root);
/* Put all the range into maple tree */
mt_init_flags(&tree, MT_FLAGS_ALLOC_RANGE);
mt_set_in_rcu(&tree);
for (j = 0; j < nnodes; j++)
WARN_ON_ONCE(mtree_store_range(&tree, nodes[j].start,
nodes[j].last, nodes + j, GFP_KERNEL));
/* Let's try nsearches different ranges */
for (k = 0; k < nsearches; k++) {
/* Try whole range once */
if (!k) {
start = 0UL;
last = ULONG_MAX;
} else {
last = (prandom_u32_state(&rnd) >> 4) % max_endpoint;
start = (prandom_u32_state(&rnd) >> 4) % last;
}
mas_span.first_index = start;
mas_span.last_index = last;
mas_span.is_hole = -1;
mas_set(&mas, start);
interval_tree_for_each_span(&span, &root, start, last) {
mas_cur_span(&mas, &mas_span);
WARN_ON_ONCE(span.is_hole != mas_span.is_hole);
if (span.is_hole) {
WARN_ON_ONCE(span.start_hole != mas_span.start_hole);
WARN_ON_ONCE(span.last_hole != mas_span.last_hole);
} else {
WARN_ON_ONCE(span.start_used != mas_span.start_used);
WARN_ON_ONCE(span.last_used != mas_span.last_used);
}
}
}
WARN_ON_ONCE(mas.status != ma_overflow);
/* Cleanup maple tree for each round */
mtree_destroy(&tree);
/* Cleanup interval tree for each round */
for (j = 0; j < nnodes; j++)
interval_tree_remove(nodes + j, &root);
}
return 0;
}
#else
static inline int span_iteration_check(void) {return 0; }
#endif
static int interval_tree_test_init(void)
{
nodes = kmalloc_array(nnodes, sizeof(struct interval_tree_node),
GFP_KERNEL);
if (!nodes)
return -ENOMEM;
queries = kmalloc_array(nsearches, sizeof(int), GFP_KERNEL);
if (!queries) {
kfree(nodes);
return -ENOMEM;
}
prandom_seed_state(&rnd, seed);
basic_check();
search_check();
intersection_range_check();
span_iteration_check();
kfree(queries);
kfree(nodes);
return -EAGAIN; /* Fail will directly unload the module */
}
static void interval_tree_test_exit(void)
{
printk(KERN_ALERT "test exit\n");
}
module_init(interval_tree_test_init)
module_exit(interval_tree_test_exit)
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michel Lespinasse");
MODULE_DESCRIPTION("Interval Tree test");