-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalyze_small_animal.py
142 lines (110 loc) · 4.16 KB
/
analyze_small_animal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import pymirc.viewer as pv
import matplotlib.pyplot as plt
import numpy as np
import nibabel as nib
import pynemaiqpet.nema_smallanimal as nsa
import pandas as pd
from scipy.signal import argrelextrema
from scipy.ndimage import find_objects, center_of_mass
import argparse
from pathlib import Path
# -----------------------------------------------------------------------------------------
# input parameter
# master directory
mpath = Path.home() / "Downloads/NEMA_Nifti_GS/"
# recursive search for nifti files to analyze
fnames = sorted(list(mpath.rglob("*Cropped*/*.nii")))
# output directory for results
output_dir = Path("results")
# verbose output
verbose = True
# method for ROI to calculate recovery for hot rods (max or mean)
lp_voxel = "mean"
# -----------------------------------------------------------------------------------------
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=True)
df = pd.DataFrame()
for nifti_file in fnames:
if verbose:
print(nifti_file)
rel_path = nifti_file.relative_to(mpath)
# read the PET volume from dicom
nii = nib.load(nifti_file)
nii = nib.as_closest_canonical(nii)
vol = np.flip(nii.get_fdata().squeeze(), (0, 1))
voxsize = nii.header["pixdim"][1:4]
flipz = False
# flip volume in z direction if necessary
if center_of_mass(vol)[2] < 0.5 * vol.shape[2]:
vol = np.flip(vol, 2)
flipz = True
phantom_name = nsa.get_phantom_name(vol, voxsize)
if verbose:
print(phantom_name)
# align the PET volume to "standard" space (a digitial version of the phantom)
vol_aligned = nsa.align_nema_2008_small_animal_iq_phantom(
vol, voxsize, version=phantom_name
)
# generate the ROI label volume
roi_vol = nsa.nema_2008_small_animal_pet_rois(
vol_aligned, voxsize, phantom=phantom_name, lp_voxel=lp_voxel
)
# generate the report
res = nsa.nema_2008_small_animal_iq_phantom_report(vol_aligned, roi_vol)
# reformat the results such that we can append them to a single data frame
res_reformatted = {}
for key, val in res.items():
if isinstance(val, np.ndarray):
for ia, aval in enumerate(val):
res_reformatted[f"{key}_{ia+1}"] = aval
else:
res_reformatted[key] = val
df = df.append(pd.DataFrame(res_reformatted, index=[rel_path]))
# ---------------------------------------------------------------------------------------------------
# plots
odir = output_dir / rel_path.parent
odir.mkdir(parents=True, exist_ok=True)
if flipz:
vol_aligned = np.flip(vol_aligned, 2)
roi_vol = np.flip(roi_vol, 2)
# show the aligned volume and the ROI volume
vi = pv.ThreeAxisViewer(
[vol_aligned, vol_aligned], [None, roi_vol**0.1], voxsize=voxsize, ls=""
)
fig_file = odir / (rel_path.stem + "_uniform_rois.png")
vi.fig.savefig(fig_file)
if verbose:
print(f"wrote {fig_file}")
plt.close(vi.fig)
# show the summed rod planes
bbox_uni = find_objects(vol_aligned >= 0.5 * np.percentile(vol_aligned, 99))
bbox_rods = find_objects(roi_vol == 4)
rod_img = vol_aligned[bbox_uni[0][0], bbox_uni[0][1], bbox_rods[0][2]].mean(2).T
roi_img = roi_vol[bbox_uni[0][0], bbox_uni[0][1], bbox_rods[0][2]].mean(2).T
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(
rod_img,
cmap=plt.cm.Greys,
interpolation="bilinear",
vmax=res["uniform_ROI_mean"],
)
ax[0].contour(roi_img > 0, levels=1, cmap="spring")
ax[1].imshow(rod_img**0.1, cmap=plt.cm.Greys, interpolation="bilinear")
ax[1].contour(roi_img > 0, levels=1, cmap="spring")
ax[0].set_title("rod image")
ax[1].set_title("rod image^0.1 (compressed contrast)")
for axx in ax.ravel():
axx.set_axis_off()
fig.tight_layout()
fig.show()
fig_file = odir / (rel_path.stem + "_rod_rois.png")
fig.savefig(fig_file)
if verbose:
print(f"wrote {fig_file}")
plt.close(fig)
# -------------------------------------
# write all results to a single csv file
csv_file = output_dir / "results.csv"
df.to_csv(csv_file)
if verbose:
print(f"wrote {csv_file}")