-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelCertifier.py
238 lines (211 loc) · 8.39 KB
/
ModelCertifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import numpy as np
from copy import deepcopy
from joblib import Parallel, delayed
from metas_unclib import *
class ModelCertifier:
def __init__(self,
n_folds=20,
n_iterations=10000,
n_jobs=-1):
"""
Initialize certifier class.
n_points: number of samples in space for MC simulation
n_folds: number of models
n_iterations: number of iterations for MC simuation
"""
self.n_folds = n_folds # number of bootstrap folds
self.n_iterations = n_iterations # number of MC iterations
self.n_jobs = n_jobs # number of jobs
self.models = [] # list to store fitted base models
self.u_x = None # stored standard uncertainty of x
@ staticmethod
def unclib_to_numpy(variables):
"""
Function that transforms a collection of unclib variables
in a list to two numpy arrays containing the values and the
uncertainties.
"""
values = []
uncertainties = []
for var in variables:
values.append(var.value)
uncertainties.append(var.stdunc)
return np.asarray(values), np.asarray(uncertainties)
@staticmethod
def numpy_to_unclib(values, uncertainties, desc="o_"):
"""
Function that transforms two numpy array of values and
uncertainties to a list with the corresponding
unclib elements.
"""
assert values.shape[0] == uncertainties.shape[0]
n = values.shape[0]
elements = []
for i in range(n):
elements.append(ufloat(values[i],
uncertainties[i],
desc=desc+str(i)))
return elements
@staticmethod
def distributed_training(X, y, model):
"""
Function for distributed training.
Input
-----
X, y: data set
model: machine learning model with "fit" method
"""
n = X.shape[0]
samples = np.random.randint(0, n, n)
X_b, y_b = X[samples], y[samples]
model.fit(X_b, y_b)
return model
@staticmethod
def distributed_noise_estimate(X, y, model, robust=False):
"""
Function to compute the noise.
Input
-----
X, y: data set
model: machine learning model with "fit" method
"""
y_pred = model.predict(X)
sigma = np.sqrt(np.mean((y - y_pred)**2))
if robust:
sigma = np.sqrt(np.median((y - y_pred) ** 2))
return sigma
@staticmethod
def distributed_Monte_Carlo(X, model, u_x, sigma, include_noise=True):
"""
Function to perform distributed Monte Carlo.
Input
-----
X: data set
model: machine learning model with "fit" method
u_x: uncertainty vector
sigma: noise
"""
n, p = X.shape
eps_1 = np.random.normal(0, 1, (n, p))
eps_2 = np.random.normal(0, 1, n)
if (X.shape == u_x.shape):
X_i = X + np.multiply(eps_1, u_x)
else:
X_i = X + np.dot(eps_1, u_x)
y_i = model.predict(X_i)
if include_noise:
y_i = y_i + np.dot(eps_2, sigma)
return y_i
@staticmethod
def get_min_max(X, axis=0):
"""
Function to get min. and max. values of an array.
Input
-----
X: design matrix
"""
X_min, X_max = np.min(X, axis=axis), np.max(X, axis=axis)
return X_min, X_max
@staticmethod
def sample_uniform(low, high, size):
"""
Function to sample uniformly between
low and high.
"""
return np.random.uniform(low, high, size)
@staticmethod
def sample_normal(loc, scale, size):
"""
Function to sample from normal distribution.
"""
return np.random.normal(loc, scale, size)
@staticmethod
def sample_bootstrap(n):
"""
Sample indicies for a bootstrap fold.
"""
return np.random.randint(0, n, n)
def create_test_data(self, X):
"""
Method to create a test data set, which does not respect
the original data distribution (the resulting variables
will be orthogonal).
Input
-----
X: design matrix or vector
"""
n, p = X.shape
X_min, X_max = self.get_min_max(X)
X_test = self.sample_uniform(X_min, X_max, (n, p))
return X_test
def make_prediction(self, X, single_sample=True):
"""
Function that performs predictions
but also reshapes input if necessary.
Input
-----
X: design matrix or vector
single sample: whether X contains only one sample
"""
n_models = len(self.models)
if n_models == 0:
return print("Estimate uncertainty first.")
if (len(X.shape) == 1):
if single_sample:
X = X.reshape(1, -1)
else:
X = X.reshape(-1, 1)
n_samples = X.shape[0]
predictions = np.zeros((n_samples, n_models))
for i, model in enumerate(self.models):
predictions[:, i] = model.predict(X).ravel()
mu, std = np.mean(predictions, axis=1), np.std(predictions, axis=1)
return mu, std, predictions
def estimate_uncertainty(self, X, y, base_model, u_x, X_test=None, bootstrap=True, include_noise=True, robust=False):
"""
Function that performs black-box uncertainty estimation.
Input
-----
X, y: input data set D of shape (n, p) and (n, )
base_model: model class to be evaluated
u_x: standard uncertainty for X of shape (1) or (p, ) or shape of X_test
X_test: test data set; will be created if not provided
bootstrap: wether to use bootstrapping to estimate model uncertainty
include_noise: whether to add noise to the predictions
robust: wether to use robust statistics (i.e., median instead of mean)
Output
------
X_test, predictions: matrix of MC samples at evaluation points X_test
"""
# Create data if no test dataset has been provided.
if X_test is None:
X_test = self.create_test_data(X)
n_samples, _ = X_test.shape
# Allocate memory.
predictions = np.zeros((n_samples, self.n_folds * self.n_iterations))
self.u_x = np.array(u_x)
if (X_test.shape != self.u_x.shape):
self.u_x = np.diag(self.u_x)
# Distributed training to estimate epistemic uncertainty.
if bootstrap:
base_model = deepcopy(base_model)
self.models = Parallel(n_jobs=-1)(delayed(self.distributed_training)(X,
y,
base_model) for _ in range(self.n_folds))
else:
self.models.append(base_model)
# Estimate average noise across models.
sigma = Parallel(n_jobs=-1)(delayed(self.distributed_noise_estimate)(X,
y,
model,
robust) for model in self.models)
sigma = np.mean(np.array(sigma)) # this could be a biased estimate...
# Simulate uncertainty in input / output.
for b, model in enumerate(self.models):
y_i = Parallel(n_jobs=-1)(delayed(self.distributed_Monte_Carlo)(X_test,
model,
self.u_x,
sigma,
include_noise) for _ in range(self.n_iterations))
predictions[:, b * self.n_iterations : (b + 1) * self.n_iterations] = np.array(y_i).T
return X_test, predictions