Skip to content

Latest commit

 

History

History
398 lines (300 loc) · 11.3 KB

README.md

File metadata and controls

398 lines (300 loc) · 11.3 KB

JSONSchemaBench

Reliably generating structured outputs is a key capability for modern LLM applications. Despite its growing adoption, a systematic evaluation of structured output generation is still lacking. With JSON Schema emerging as the standard format for structured data, we introduce JSONSchemaBench a benchmark of around 10,000 real-world JSON schemas that capture a wide range of constraints and complexities. JSONSchemaBench helps to measure efficiency and coverage of a given structured output engine.


Figure 1: Comparison across various constrained-decoding frameworks by efficiency (speed of output generation), coverage (support for JSON Schema features), and quality (effects on underlying task accuracy).

MaskBench

On top of JSONSchemaBench's view on real world JSON schema, we also develop a purely performance-oriented benchmark MaskBench targeting mask computation times. This benchmark emphasizes results relevant to server-side deployments of constrained decoding.


Figure 2: Isolated performance of token mask computation (for server-side scenarios). See MaskBench folder.

Dataset Details

JSONSchemaBench is built from a collection of real-world JSON schemas drawn from diverse sources, including GitHub, Kubernetes configurations, and API specifications. The benchmark consists of schemas categorized into datasets based on complexity and domain. We start from collections from json-schema-corpus and did heavy curation to ensure the schemas are standard-compliant and satisfiable. We also added schemas from other sources to increase the diversity of the benchmark, such as GlaiveAI function call schemas and kubernetes schemas. We then categorized the schemas into datasets based on complexity and domain. The datasets are as follows:

Dataset Category Count
GlaiveAI-2K Function Call 1707
Github-Trivial Misc 444
Github-Easy Misc 1943
Snowplow Operational API 403
Github-Medium Misc 1976
Kubernetes Kubernetes API 1064
Washington Post Resource Access API 125
Github-Hard Misc 1240
JSONSchemaStore Misc 492
Github-Ultra Misc 164
Total 9558

For statistics on the datasets and an overview of schema constraint features, please refer to the paper(link coming soon).

View Statistics on the Datasets

Data files

data
├── Github_easy
├── Github_hard
├── Github_medium
├── Github_trivial
├── Github_ultra
├── Glaiveai2K
├── JsonSchemaStore
├── Kubernetes
├── Snowplow
└── WashingtonPost

Each folder contains the json schema included

data
└── Github_easy
    ├── track_calories_82bd0ec9.json
    ├── track_calories_93d75421.json
    ├── track_calories_be81cd27.json
    ├── track_calories_d61851c9.json
    ├── track_calories_d9be8839.json
    ├── track_calories_ecbd9766.json
    ├── track_expenses_a6fa070d.json
    ├── track_expenses_c8268204.json
    └── track_fitness_activity_2989efaf.json

Quick Start

Step 1. Load a JSON Schema from the GlaiveAI Dataset:

import json
with open('data/Glaiveai2K/search_restaurants_d4619845.json') as f:
    schema = json.load(f)
    print(schema)
View Example JSON Schema
{
  "properties": {
    "cuisine": {
      "description": "The cuisine to search for",
      "type": "string"
    },
    "location": {
      "description": "The location to search for restaurants",
      "type": "string"
    },
    "price_range": {
      "properties": {
        "max_price": {
          "description": "The maximum price range for restaurants",
          "type": "number"
        },
        "min_price": {
          "description": "The minimum price range for restaurants",
          "type": "number"
        }
      },
      "required": [
        "min_price",
        "max_price"
      ],
      "type": "object"
    }
  },
  "required": [
    "location",
    "cuisine",
    "price_range"
  ],
  "type": "object"
}

Step 2. Create a prompt to generate structured output:

prompt = f"Generate a function call that adheres to the following schema: {schema}"
# Feel free to include few-shot examples or additional context to improve the output.

Step 3. Use a Structured Output Generation Engine to generate output:

Below are examples for various structured output generation engines. For further details, refer to the official documentation of each engine.

OpenAI

View Code Example

Requires openai library and a valid OpenAI API key. Install the library using:

pip install openai
import os
from openai import OpenAI
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

# OpenAI requires "additional_properties": false in the schema and all nested sub-schemas.
schema["additionalProperties"] = False
schema["properties"]["price_range"]["additionalProperties"] = False

openai_response = client.chat.completions.create(
  model="gpt-4o-2024-08-06",
  messages=[
    {"role": "user", "content": prompt}
  ],
  response_format={
    "type": "json_schema",
    "json_schema": {
      "name": "default",
      "strict": True,
      "schema": schema
    }
  }
)

output:str = openai_response.choices[0].message.content

Gemini

View Code Example

Requires google-generativeai library and a valid Google API key. Install the library using:

pip install google-generativeai
import os
import google.generativeai as genai

genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
model = genai.GenerativeModel("gemini-1.5-flash")

response = model.generate_content(contents=prompt, generation_config=genai.GenerationConfig(
        response_mime_type="application/json", response_schema=schema
    ))
output:str = response.text

Guidance

View Code Example

Requires guidance and transformers libraries. Install them using:

pip install guidance transformers
import guidance
operator = guidance.json(schema=schema, name='json_generation')
guidance_model = guidance.models.Transformers('meta-llama/Llama-3.2-1B-Instruct')

response = guidance_model + prompt + operator

output:str = response["json_generation"]

XGrammar

View Code Example

Requires xgrammar and transformers libraries. Install them using:

pip install xgrammar transformers
import xgrammar
from transformers import AutoTokenizer, AutoModelForCausalLM

hf_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
hf_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")

tokenizer_info = xgrammar.TokenizerInfo.from_huggingface(
    hf_tokenizer, vocab_size=hf_model.config.vocab_size
)
grammar_compiler = xgrammar.GrammarCompiler(
    tokenizer_info
)

compiled_grammar = grammar_compiler.compile_json_schema(json.dumps(schema))
logit_processor = xgrammar.contrib.hf.LogitsProcessor(compiled_grammar)

model_inputs = hf_tokenizer(prompt, return_tensors="pt")
output_ids = hf_model.generate(**model_inputs, logits_processor=[logit_processor], max_length=200)

generated_ids = output_ids[0][len(model_inputs.input_ids[0]) :]
output:str = hf_tokenizer.decode(generated_ids, skip_special_tokens=True)

Outlines

View Code Example

Requires outlines library. Install it using:

pip install outlines   
import outlines
model = model = outlines.models.transformers(
    model_name="meta-llama/Llama-3.2-1B-Instruct"
)
generator = outlines.generate.json(
                model, schema_object=json.dumps(schema)
            )
output:str = json.dumps(generator(prompt))

Llamacpp

View Code Example

Requires llama_cpp library. Install it using:

pip install llama-cpp-python
import llama_cpp
from llama_cpp.llama_grammar import LlamaGrammar

model = llama_cpp.Llama.from_pretrained(repo_id="bartowski/Llama-3.2-1B-Instruct-GGUF", filename="*Q8_0.gguf")
compiled_grammar = LlamaGrammar.from_json_schema(json.dumps(schema))

response = model.create_chat_completion(
                messages=[
                    {"role": "user", "content": prompt}
                ],
                grammar=compiled_grammar
            )
output:str = response["choices"][0]["message"]["content"]

Output Validation

We validate the schemas using the jsonschema library, ensuring compliance with the JSON Schema Draft 2012 specification. Additionally, we enable the format validation with a few custom format checkers for enhanced validation.

To install the required library, run:

pip install jsonschema

Here’s an example of validating a structured output against a schema:

import json
from validation import validate_enhanaced

output:str = '{"cuisine": "Italian", "location": "New York", "price_range": {"max_price": 30, "min_price": 10}}'

validate_enhanaced(json.loads(output), schema)

JSON Schema Test Suite

For more details about the JSON Schema Test Suite used in the paper, visit the official repository. The results of the test suite coverage are shown below

View Test Suite Coverage

Feature Checklist

We provide a feature checklist for each Structured Output Generation Engine based on their documentation and implementation. This provides a comprehensive overview of the supported JSON Schema features.

View Feature Checklist

Citation

@misc{geng2025jsonschemabench,
      title={Generating Structured Outputs from Language Models: Benchmark and Studies}, 
      author={Saibo Geng and Hudson Cooper and Michał Moskal and Samuel Jenkins and Julian Berman and Nathan Ranchin and Robert West and Eric Horvitz and Harsha Nori},
      year={2025},
      eprint={2501.10868},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.10868}, 
}