diff --git a/requirements.txt b/requirements.txt index ada74b9..6ec76a0 100755 --- a/requirements.txt +++ b/requirements.txt @@ -10,4 +10,4 @@ tensorboard matplotlib numpy scikit_learn -sktime==0.4.1 \ No newline at end of file +sktime diff --git a/src/datasets/data.py b/src/datasets/data.py index cf151f4..fabac5c 100755 --- a/src/datasets/data.py +++ b/src/datasets/data.py @@ -9,9 +9,8 @@ import numpy as np import pandas as pd from tqdm import tqdm -from sktime.utils import load_data -from datasets import utils +from .utils import load_from_tsfile_to_dataframe logger = logging.getLogger('__main__') @@ -283,10 +282,10 @@ def load_single(self, filepath): # Every row of the returned df corresponds to a sample; # every column is a pd.Series indexed by timestamp and corresponds to a different dimension (feature) if self.config['task'] == 'regression': - df, labels = utils.load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True, replace_missing_vals_with='NaN') + df, labels = load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True, replace_missing_vals_with='NaN') labels_df = pd.DataFrame(labels, dtype=np.float32) elif self.config['task'] == 'classification': - df, labels = load_data.load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True, replace_missing_vals_with='NaN') + df, labels = load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True, replace_missing_vals_with='NaN') labels = pd.Series(labels, dtype="category") self.class_names = labels.cat.categories labels_df = pd.DataFrame(labels.cat.codes, dtype=np.int8) # int8-32 gives an error when using nn.CrossEntropyLoss @@ -299,7 +298,7 @@ def load_single(self, filepath): else: df = data except: - df, _ = utils.load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True, + df, _ = load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True, replace_missing_vals_with='NaN') labels_df = None diff --git a/src/main.py b/src/main.py index f9a5777..088016e 100755 --- a/src/main.py +++ b/src/main.py @@ -193,10 +193,12 @@ def main(config): collate_fn=lambda x: collate_fn(x, max_len=model.max_len)) test_evaluator = runner_class(model, test_loader, device, loss_module, print_interval=config['print_interval'], console=config['console']) - aggr_metrics_test, per_batch_test = test_evaluator.evaluate(keep_all=True) + with torch.no_grad(): + aggr_metrics_test, per_batch_test = test_evaluator.evaluate(keep_all=True) print_str = 'Test Summary: ' for k, v in aggr_metrics_test.items(): - print_str += '{}: {:8f} | '.format(k, v) + if v is not None: + print_str += '{}: {:8f} | '.format(k, v) logger.info(print_str) return