-
Notifications
You must be signed in to change notification settings - Fork 450
/
Copy pathgenetic.py
262 lines (228 loc) · 9.06 KB
/
genetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# File: genetic.py
# from chapter 18 of _Genetic Algorithms with Python_
#
# Author: Clinton Sheppard <[email protected]>
# Copyright (c) 2016 Clinton Sheppard
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import random
import statistics
import sys
import time
from bisect import bisect_left
from enum import Enum
from enum import IntEnum
from math import exp
def _generate_parent(length, geneSet, get_fitness):
genes = []
while len(genes) < length:
sampleSize = min(length - len(genes), len(geneSet))
genes.extend(random.sample(geneSet, sampleSize))
fitness = get_fitness(genes)
return Chromosome(genes, fitness, Strategies.Create)
def _mutate(parent, geneSet, get_fitness):
childGenes = parent.Genes[:]
index = random.randrange(0, len(parent.Genes))
newGene, alternate = random.sample(geneSet, 2)
childGenes[index] = alternate if newGene == childGenes[index] else newGene
fitness = get_fitness(childGenes)
return Chromosome(childGenes, fitness, Strategies.Mutate)
def _mutate_custom(parent, custom_mutate, get_fitness):
childGenes = parent.Genes[:]
custom_mutate(childGenes)
fitness = get_fitness(childGenes)
return Chromosome(childGenes, fitness, Strategies.Mutate)
def _crossover(parentGenes, index, parents, get_fitness, crossover, mutate,
generate_parent):
donorIndex = random.randrange(0, len(parents))
if donorIndex == index:
donorIndex = (donorIndex + 1) % len(parents)
childGenes = crossover(parentGenes, parents[donorIndex].Genes)
if childGenes is None:
# parent and donor are indistinguishable
parents[donorIndex] = generate_parent()
return mutate(parents[index])
fitness = get_fitness(childGenes)
return Chromosome(childGenes, fitness, Strategies.Crossover)
def get_best(get_fitness, targetLen, optimalFitness, geneSet, display,
custom_mutate=None, custom_create=None, maxAge=None,
poolSize=1, crossover=None, maxSeconds=None):
if custom_mutate is None:
def fnMutate(parent):
return _mutate(parent, geneSet, get_fitness)
else:
def fnMutate(parent):
return _mutate_custom(parent, custom_mutate, get_fitness)
if custom_create is None:
def fnGenerateParent():
return _generate_parent(targetLen, geneSet, get_fitness)
else:
def fnGenerateParent():
genes = custom_create()
return Chromosome(genes, get_fitness(genes), Strategies.Create)
strategyLookup = {
Strategies.Create: lambda p, i, o: fnGenerateParent(),
Strategies.Mutate: lambda p, i, o: fnMutate(p),
Strategies.Crossover: lambda p, i, o:
_crossover(p.Genes, i, o, get_fitness, crossover, fnMutate,
fnGenerateParent)
}
usedStrategies = [strategyLookup[Strategies.Mutate]]
if crossover is not None:
usedStrategies.append(strategyLookup[Strategies.Crossover])
def fnNewChild(parent, index, parents):
return random.choice(usedStrategies)(parent, index, parents)
else:
def fnNewChild(parent, index, parents):
return fnMutate(parent)
for timedOut, improvement in _get_improvement(fnNewChild,
fnGenerateParent, maxAge,
poolSize, maxSeconds):
if timedOut:
return improvement
display(improvement)
f = strategyLookup[improvement.Strategy]
usedStrategies.append(f)
if not optimalFitness > improvement.Fitness:
return improvement
def _get_improvement(new_child, generate_parent, maxAge, poolSize,
maxSeconds):
startTime = time.time()
bestParent = generate_parent()
yield maxSeconds is not None and time.time() - \
startTime > maxSeconds, bestParent
parents = [bestParent]
historicalFitnesses = [bestParent.Fitness]
for _ in range(poolSize - 1):
parent = generate_parent()
if maxSeconds is not None and time.time() - startTime > maxSeconds:
yield True, parent
if parent.Fitness > bestParent.Fitness:
yield False, parent
bestParent = parent
historicalFitnesses.append(parent.Fitness)
parents.append(parent)
lastParentIndex = poolSize - 1
pindex = 1
while True:
if maxSeconds is not None and time.time() - startTime > maxSeconds:
yield True, bestParent
pindex = pindex - 1 if pindex > 0 else lastParentIndex
parent = parents[pindex]
child = new_child(parent, pindex, parents)
if parent.Fitness > child.Fitness:
if maxAge is None:
continue
parent.Age += 1
if maxAge > parent.Age:
continue
index = bisect_left(historicalFitnesses, child.Fitness, 0,
len(historicalFitnesses))
proportionSimilar = index / len(historicalFitnesses)
if random.random() < exp(-proportionSimilar):
parents[pindex] = child
continue
bestParent.Age = 0
parents[pindex] = bestParent
continue
if not child.Fitness > parent.Fitness:
# same fitness
child.Age = parent.Age + 1
parents[pindex] = child
continue
child.Age = 0
parents[pindex] = child
if child.Fitness > bestParent.Fitness:
bestParent = child
yield False, bestParent
historicalFitnesses.append(bestParent.Fitness)
def hill_climbing(optimizationFunction, is_improvement, is_optimal,
get_next_feature_value, display, initialFeatureValue):
best = optimizationFunction(initialFeatureValue)
stdout = sys.stdout
sys.stdout = None
while not is_optimal(best):
featureValue = get_next_feature_value(best)
child = optimizationFunction(featureValue)
if is_improvement(best, child):
best = child
sys.stdout = stdout
display(best, featureValue)
sys.stdout = None
sys.stdout = stdout
return best
def tournament(generate_parent, crossover, compete, display, sort_key,
numParents=10, max_generations=100):
pool = [[generate_parent(), [0, 0, 0]] for _ in
range(1 + numParents * numParents)]
best, bestScore = pool[0]
def getSortKey(x):
return sort_key(x[0], x[1][CompetitionResult.Win],
x[1][CompetitionResult.Tie],
x[1][CompetitionResult.Loss])
generation = 0
while generation < max_generations:
generation += 1
for i in range(0, len(pool)):
for j in range(0, len(pool)):
if i == j:
continue
playera, scorea = pool[i]
playerb, scoreb = pool[j]
result = compete(playera, playerb)
scorea[result] += 1
scoreb[2 - result] += 1
pool.sort(key=getSortKey, reverse=True)
if getSortKey(pool[0]) > getSortKey([best, bestScore]):
best, bestScore = pool[0]
display(best, bestScore[CompetitionResult.Win],
bestScore[CompetitionResult.Tie],
bestScore[CompetitionResult.Loss], generation)
parents = [pool[i][0] for i in range(numParents)]
pool = [[crossover(parents[i], parents[j]), [0, 0, 0]]
for i in range(len(parents))
for j in range(len(parents))
if i != j]
pool.extend([parent, [0, 0, 0]] for parent in parents)
pool.append([generate_parent(), [0, 0, 0]])
return best
class CompetitionResult(IntEnum):
Loss = 0,
Tie = 1,
Win = 2,
class Chromosome:
def __init__(self, genes, fitness, strategy):
self.Genes = genes
self.Fitness = fitness
self.Strategy = strategy
self.Age = 0
class Strategies(Enum):
Create = 0,
Mutate = 1,
Crossover = 2
class Benchmark:
@staticmethod
def run(function):
timings = []
stdout = sys.stdout
for i in range(100):
sys.stdout = None
startTime = time.time()
function()
seconds = time.time() - startTime
sys.stdout = stdout
timings.append(seconds)
mean = statistics.mean(timings)
if i < 10 or i % 10 == 9:
print("{} {:3.2f} {:3.2f}".format(
1 + i, mean,
statistics.stdev(timings, mean) if i > 1 else 0))