forked from IDKiro/action-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
82 lines (71 loc) · 2.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn as nn
import torchvision.models as models
from torchvision import transforms, utils
class LSTMModel(nn.Module):
def __init__(self, original_model, arch, num_classes, lstm_layers, hidden_size, fc_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_classes = num_classes
self.fc_size = fc_size
# select a base model
if arch.startswith('alexnet'):
self.features = original_model.features
for i, param in enumerate(self.features.parameters()):
param.requires_grad = False
self.fc_pre = nn.Sequential(nn.Linear(9216, fc_size), nn.Dropout())
self.rnn = nn.LSTM(input_size = fc_size,
hidden_size = hidden_size,
num_layers = lstm_layers,
batch_first = True)
self.fc = nn.Linear(hidden_size, num_classes)
self.modelName = 'alexnet_lstm'
elif arch.startswith('resnet18'):
self.features = nn.Sequential(*list(original_model.children())[:-1])
for i, param in enumerate(self.features.parameters()):
param.requires_grad = False
self.fc_pre = nn.Sequential(nn.Linear(512, fc_size), nn.Dropout())
self.rnn = nn.LSTM(input_size = fc_size,
hidden_size = hidden_size,
num_layers = lstm_layers,
batch_first = True)
self.fc = nn.Linear(hidden_size, num_classes)
self.modelName = 'resnet18_lstm'
elif arch.startswith('resnet34'):
self.features = nn.Sequential(*list(original_model.children())[:-1])
for i, param in enumerate(self.features.parameters()):
param.requires_grad = False
self.fc_pre = nn.Sequential(nn.Linear(512, fc_size), nn.Dropout())
self.rnn = nn.LSTM(input_size = fc_size,
hidden_size = hidden_size,
num_layers = lstm_layers,
batch_first = True)
self.fc = nn.Linear(hidden_size, num_classes)
self.modelName = 'resnet34_lstm'
elif arch.startswith('resnet50'):
self.features = nn.Sequential(*list(original_model.children())[:-1])
for i, param in enumerate(self.features.parameters()):
param.requires_grad = False
self.fc_pre = nn.Sequential(nn.Linear(2048, fc_size), nn.Dropout())
self.rnn = nn.LSTM(input_size = fc_size,
hidden_size = hidden_size,
num_layers = lstm_layers,
batch_first = True)
self.fc = nn.Linear(hidden_size, num_classes)
self.modelName = 'resnet50_lstm'
else:
raise Exception("This architecture has not been supported yet")
def init_hidden(self, num_layers, batch_size):
return (torch.zeros(num_layers, batch_size, self.hidden_size).cuda(),
torch.zeros(num_layers, batch_size, self.hidden_size).cuda())
def forward(self, inputs, hidden=None, steps=0):
length = len(inputs)
fs = torch.zeros(inputs[0].size(0), length, self.rnn.input_size).cuda()
for i in range(length):
f = self.features(inputs[i])
f = f.view(f.size(0), -1)
f = self.fc_pre(f)
fs[:, i, :] = f
outputs, hidden = self.rnn(fs, hidden)
outputs = self.fc(outputs)
return outputs