-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
276 lines (218 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from meta_net import wpi, wpi_dec
from resnet32 import ResNet32
from wideresnet import WideResNet
import torch
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
from dataloader import CIFAR10, CIFAR100
import argparse
import os, warnings
import math
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--dataset', default='cifar10', type=str, help='dataset (cifar10 [default] or cifar100)')
parser.add_argument('--corruption_prob', type=float, default=0.4, help='label noise')
parser.add_argument('--corruption_type', '-ctype', type=str, default='flip', help='Type of corruption ("unif" or "flip" or "flip2").')
parser.add_argument('--num_meta', type=int, default=1000)
parser.add_argument('--epochs', default=120, type=int, help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--batch_size', default=100, type=int, help='mini-batch size (default: 100)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--nesterov', default=True, type=bool, help='nesterov momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float, help='weight decay (default: 5e-0.4)')
parser.add_argument('--WReNset', default=False, type=bool, help='using WideResNet-28-10')
parser.add_argument('--no-augment', dest='augment', action='store_false', help='whether to use standard augmentation (default: True)')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--prefetch', type=int, default=4, help='Pre-fetching threads.')
parser.add_argument('--gpuid', type=str, default='0')
parser.add_argument('--sample_number', type=int, default=3)
parser.set_defaults(augment=True)
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpuid
def build_dataset(root, args):
if args.dataset == 'cifar10':
normalize = transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.2010))
elif args.dataset == 'cifar100':
normalize = transforms.Normalize((0.507,0.487,0.441),(0.267,0.265,0.276))
if args.augment:
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0), (4, 4, 4, 4), mode='reflect').squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
train_transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
if args.dataset == 'cifar10':
train_data_meta = CIFAR10(
root='../../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, strong_t=None)
train_data = CIFAR10(
root='../../data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
test_data = CIFAR10(root='../../data', train=False, transform=test_transform, download=True)
elif args.dataset == 'cifar100':
train_data_meta = CIFAR100(
root='../../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, strong_t=None)
train_data = CIFAR100(
root='../../data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
test_data = CIFAR100(root='../../data', train=False, transform=test_transform, download=True)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
train_meta_loader = torch.utils.data.DataLoader(
train_data_meta, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False,
num_workers=args.prefetch, pin_memory=True)
return train_loader, train_meta_loader, test_loader
def build_model(args):
if args.WReNset:
model = WideResNet(depth=28, num_classes = args.dataset == 'cifar10' and 10 or 100, widen_factor=10)
else:
model = ResNet32(args.dataset == 'cifar10' and 10 or 100)
if torch.cuda.is_available():
model.cuda()
torch.backends.cudnn.benchmark = True
return model
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def loss_function(logits, onehot_label):
log_prob = torch.nn.functional.log_softmax(logits, dim=1)
loss = - torch.sum(log_prob * onehot_label) / logits.size(0)
return loss
def train(train_loader, train_meta_loader, model, vnet, optimizer_model, optimizer_vnet, epoch):
import tqdm
print('Epoch: %d, lr: %.5f' % (epoch, optimizer_model.param_groups[0]['lr']))
train_loss = 0
meta_loss = 0
acc_meta = 0.0
acc_train = 0.0
num = 0
train_meta_loader_iter = iter(train_meta_loader)
for batch_idx, (inputs, targets, path) in enumerate(tqdm.tqdm(train_loader, ncols=0)):
num = batch_idx
model.train()
meta_model = build_model(args).cuda()
meta_model.load_state_dict(model.state_dict())
oringal_targets = targets.cuda()
inputs, targets = inputs.cuda(), targets.cuda()
targets_onehot = torch.nn.functional.one_hot(targets, num_classes).float().cuda()
# ========================== step 1 ====================================
outputs = meta_model(inputs)
# sample number
v_lambda = vnet(outputs.detach(), targets, args.sample_number)
l_f_meta = loss_function((v_lambda * outputs).view(-1, num_classes),
targets_onehot.repeat(args.sample_number, 1)) # monte carlo estimation
# updata copy_model`s params
meta_model.zero_grad()
grads = torch.autograd.grad(l_f_meta, (meta_model.params()), create_graph=True)
meta_lr = optimizer_model.param_groups[0]['lr']
meta_model.update_params(lr_inner=meta_lr, source_params=grads)
del grads
# ========================= step 2 =====================================
try:
inputs_val, targets_val, _ = next(train_meta_loader_iter)
except StopIteration:
train_meta_loader_iter = iter(train_meta_loader)
inputs_val, targets_val, _ = next(train_meta_loader_iter)
inputs_val, targets_val = inputs_val.cuda(), targets_val.cuda() # [500,3,32,32], [500]
y_g_hat = meta_model(inputs_val)
prec_train = accuracy(y_g_hat.data, targets_val.data, topk=(1,))[0]
acc_meta += prec_train
l_g_meta = F.cross_entropy(y_g_hat, targets_val.long())
# update vnet params
optimizer_vnet.zero_grad()
l_g_meta.backward()
optimizer_vnet.step()
# ========================= step 3 =====================================
outputs = model(inputs)
prec_train = accuracy(outputs.data, oringal_targets.data, topk=(1,))[0]
acc_train += prec_train
with torch.no_grad():
w_new = vnet(outputs.detach(), targets, args.sample_number)
# v_lambda = vnet(outputs.detach(), targets, args.sample_number)
loss = loss_function((w_new * outputs).view(-1, num_classes),
targets_onehot.repeat(args.sample_number, 1))
# loss = loss_function(w_new*outputs, targets_onehot)
# update model params
optimizer_model.zero_grad()
loss.backward()
optimizer_model.step()
train_loss += loss.item()
meta_loss += l_g_meta.item()
return train_loss/(num+1), meta_loss/(num+1), acc_train/(num+1), acc_meta/(num+1)
def test(model, test_loader):
model.eval()
correct = 0
test_loss = 0
with torch.no_grad():
for batch_idx, (inputs, targets, _) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
test_loss += F.cross_entropy(outputs, targets).item()
_, predicted = outputs.max(1)
correct += predicted.eq(targets).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
return accuracy
def adjust_learning_rate(optimizer, epochs, args):
lr = args.lr * ((0.1 ** int(epochs >= 80)) * (0.1 ** int(epochs >= 100))) # For WRN-28-10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
torch.manual_seed(args.seed)
root = './data_and_load'
train_loader, train_meta_loader, test_loader = build_dataset(root, args)
model = build_model(args).cuda()
global num_classes
if args.dataset == 'cifar10':
num_classes = 10
else:
num_classes = 100
vnet = wpi(2*num_classes, 100, num_classes).cuda()
optimizer_model = torch.optim.SGD(model.params(), lr=0.1, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer_vnet = torch.optim.Adam(vnet.params(), 3e-4)
best_acc = 0.0
for epoch in range(args.epochs):
adjust_learning_rate(optimizer_model, epoch, args)
train_loss, meta_loss, acc_train, acc_meta = train(train_loader, train_meta_loader, model, vnet, optimizer_model, optimizer_vnet, epoch)
test_acc = test(model=model, test_loader=test_loader)
print("epoch:[%d/%d]\t train_loss:%.4f\t meta_loss:%.4f\t train_acc:%.4f\t meta_acc:%.4f\t test_acc:%.4f\t \n" % ((epoch + 1), args.epochs, train_loss, meta_loss, acc_train, acc_meta, test_acc))
print( "epoch:[%d/%d]\t, train_loss:%.4f\t, meta_loss:%.4f\t, train_acc:%.4f\t, meta_acc:%.4f\t, test_acc:%.4f\t \n" % ( (epoch + 1), args.epochs, train_loss, meta_loss, acc_train, acc_meta, test_acc), file=mytxt)
if test_acc >= best_acc:
best_acc = test_acc
print('best_acc: ', best_acc)
if __name__ == '__main__':
txt_name = args.dataset + '_' + args.corruption_type + '_' + str(args.corruption_prob)
print(txt_name)
mytxt = open(txt_name + '.txt', mode='a', encoding='utf-8')
main()
mytxt.close()