-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
220 lines (162 loc) · 6.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from functools import reduce
from gensim.models import Word2Vec
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras.layers import Bidirectional, Dense, LSTM, Reshape, TimeDistributed
from keras.models import Sequential, load_model
from keras.preprocessing.sequence import pad_sequences
from logging import FileHandler, Formatter, StreamHandler
from os import path
from main import bind_word, TumnSequence
import argparse
import datetime
import json
import logging
import numpy as np
import os
import random
def split_train_set(train_set):
random.shuffle(train_set)
train_len = len(train_set)
test_amount = int(train_len / 10)
return train_set[test_amount:], train_set[:test_amount]
def process_data(args, logger, dataset_name, dataset_label):
x_set = []
y_set = []
try:
with open('./fit/dataset/%s/%s' % (dataset_name, dataset_label), 'r', encoding='utf-8') as f:
dataset = json.loads(f.read())
for data in dataset:
x_set.append(data['content'])
y_set.append([1.0 if filter else 0.0 for filter in data['filter']])
f.close()
except IOError:
logger.error("[Fit] Error while reading dataset %s!" % dataset_label)
return [x_set, y_set]
def run(args):
if path.exists("./fit/logs/tumn.log"):
os.remove("./fit/logs/tumn.log")
file_formatter = Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s > %(message)s')
file_handler = FileHandler('./fit/logs/tumn.log')
file_handler.setFormatter(file_formatter)
# stream_handler = ChalkHandler()
stream_handler = StreamHandler()
logger = logging.getLogger("Tumn")
logger.setLevel(logging.DEBUG)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
dataset_name = args['dataset_name']
epoch = args['epoch']
seq_chunk = args['seq_chunk']
batch_size = args['batch_size']
word2vec_size = args['word2vec_size']
verbosity = args['verbosity']
tensorboard = args['tensorboard']
# Creating tumn model
logger.info("[Fit] Generating model...")
model = None
if args['load']:
model = load_model(args['load'])
logger.info("[Fit] Loaded model from %s." % args['load'])
else:
model = Sequential([
Bidirectional(
LSTM(5, activation='relu', dropout=0.2, return_sequences=True),
input_shape=(None, word2vec_size)
),
TimeDistributed(Dense(20, activation='relu')),
TimeDistributed(Dense(1, activation='sigmoid')),
Reshape((-1, ))
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['categorical_accuracy'])
model.summary()
# Reading parsed comments
logger.info("[Fit] Reading parsed dataset from %s ..." % dataset_name)
train_set = process_data(args, logger, dataset_name, "train")
train_zipped = []
test_set = [[], []]
test_zipped = []
test_from_train = True
if path.exists("./fit/dataset/%s/%s" % (dataset_name, 'test')):
test_set = process_data(args, logger, dataset_name, "test")
test_zipped = []
test_from_train = False
else:
logger.info("[Fit] No validation set found. It will split train set into train set and validation set.")
logger.info("[Fit] Done reading %d train set & %d test sets!" % (len(train_set[0]), len(test_set[0])))
# Creating Word embedding model
if not path.exists("./fit/models/word2vec.txt"):
logger.info("[Fit] Creating word2vec model...")
w_model = Word2Vec(train_set[0], min_count=1, size=word2vec_size, iter=10, sg=0)
w_model.save("./fit/models/word2vec.txt")
else:
logger.info("[Fit] Reading from saved word2vec model...")
w_model = Word2Vec.load("./fit/models/word2vec.txt")
train_set[0] = bind_word(train_set[0], w_model)
train_zipped = list(zip(*train_set))
# Zipping Models
if test_from_train:
train_zipped, test_zipped = split_train_set(train_zipped)
else:
test_set[0] = bind_word(test_set[0], w_model)
test_zipped = list(zip(*test_set))
train_zipped = sorted(train_zipped, key=lambda zip: len(zip[0]))
test_zipped = sorted(test_zipped, key=lambda zip: len(zip[0]))
# Preprocess input, outputs
logger.info("[Fit] Preprocessing train dataset...")
train_generator = TumnSequence(train_zipped, seq_chunk, batch_size)
logger.info("[Fit] Preprocessing test dataset...")
test_generator = TumnSequence(test_zipped, seq_chunk, batch_size)
logger.info("[Fit] Done generating %d train set & %d test sets!" % (len(train_zipped), len(test_zipped)))
# Fit the model
logger.info("[Fit] Fitting the model...")
model_path = \
"./fit/models/%s (Date %s" % (dataset_name, datetime.datetime.now().strftime("%m-%d %Hh %Mm ")) + \
", Epoch {epoch:02d}, Acc {val_categorical_accuracy:.3f}, Loss {val_loss:.3f}).hdf5"
callbacks = [
ModelCheckpoint(filepath=model_path)
]
if tensorboard:
callbacks.append(TensorBoard(log_dir=tensorboard))
model.fit_generator(
generator=train_generator, validation_data=test_generator,
epochs=epoch, verbose=verbosity, callbacks=callbacks,
shuffle=True
)
def check_and_create_dir(dir_name):
if not path.isdir(dir_name):
os.mkdir(dir_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train models')
parser.add_argument('--load', dest='load', metavar='[hd5]', help='Resume from hd5 file.')
args = parser.parse_args()
check_and_create_dir("./fit/")
check_and_create_dir("./fit/dataset/")
check_and_create_dir("./fit/models/")
check_and_create_dir("./fit/logs/")
check_and_create_dir("./fit/logs/model/")
default_configuration = {
'epoch': 20,
'seq_chunk': 10,
'batch_size': 128,
'word2vec_size': 50,
'verbosity': 1,
'tensorboard': './fit/logs/model/',
'dataset_name': 'swearwords'
}
if not path.exists("./fit/config.json"):
with open('./fit/config.json', 'w', encoding='utf-8') as f:
json.dump(default_configuration, f, indent=4)
with open('./fit/config.json', 'r', encoding='utf-8') as f:
configuration = json.load(f)
default_configuration.update(configuration)
configuration = default_configuration
dataset_basepath = "./fit/dataset/%s/" % configuration['dataset_name']
check_and_create_dir(dataset_basepath)
if not path.exists(dataset_basepath + "train"):
print("Dataset not given!")
exit()
if args.load:
configuration['load'] = args.load
else:
configuration['load'] = None
run(configuration)