@@ -73,13 +73,15 @@ class calls the ``fit`` method of each sub-estimator on random samples
73
73
74
74
MAX_INT = np .iinfo (np .int32 ).max
75
75
76
+
76
77
def _generate_sample_indices (random_state , n_samples ):
77
78
"""Private function used to _parallel_build_trees function."""
78
79
random_instance = check_random_state (random_state )
79
80
sample_indices = random_instance .randint (0 , n_samples , n_samples )
80
81
81
82
return sample_indices
82
83
84
+
83
85
def _generate_unsampled_indices (random_state , n_samples ):
84
86
"""Private function used to forest._set_oob_score function."""
85
87
sample_indices = _generate_sample_indices (random_state , n_samples )
@@ -90,6 +92,7 @@ def _generate_unsampled_indices(random_state, n_samples):
90
92
91
93
return unsampled_indices
92
94
95
+
93
96
def _parallel_build_trees (tree , forest , X , y , sample_weight , tree_idx , n_trees ,
94
97
verbose = 0 , class_weight = None ):
95
98
"""Private function used to fit a single tree in parallel."""
@@ -181,6 +184,8 @@ def apply(self, X):
181
184
def decision_path (self , X ):
182
185
"""Return the decision path in the forest
183
186
187
+ .. versionadded:: 0.18
188
+
184
189
Parameters
185
190
----------
186
191
X : array-like or sparse matrix, shape = [n_samples, n_features]
@@ -197,6 +202,7 @@ def decision_path(self, X):
197
202
n_nodes_ptr : array of size (n_estimators + 1, )
198
203
The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
199
204
gives the indicator value for the i-th estimator.
205
+
200
206
"""
201
207
X = self ._validate_X_predict (X )
202
208
indicators = Parallel (n_jobs = self .n_jobs , verbose = self .verbose ,
@@ -786,6 +792,9 @@ class RandomForestClassifier(ForestClassifier):
786
792
`ceil(min_samples_split * n_samples)` are the minimum
787
793
number of samples for each split.
788
794
795
+ .. versionchanged:: 0.18
796
+ Added float values for percentages.
797
+
789
798
min_samples_leaf : int, float, optional (default=1)
790
799
The minimum number of samples required to be at a leaf node:
791
800
@@ -794,6 +803,9 @@ class RandomForestClassifier(ForestClassifier):
794
803
`ceil(min_samples_leaf * n_samples)` are the minimum
795
804
number of samples for each node.
796
805
806
+ .. versionchanged:: 0.18
807
+ Added float values for percentages.
808
+
797
809
min_weight_fraction_leaf : float, optional (default=0.)
798
810
The minimum weighted fraction of the input samples required to be at a
799
811
leaf node.
@@ -991,6 +1003,9 @@ class RandomForestRegressor(ForestRegressor):
991
1003
`ceil(min_samples_split * n_samples)` are the minimum
992
1004
number of samples for each split.
993
1005
1006
+ .. versionchanged:: 0.18
1007
+ Added float values for percentages.
1008
+
994
1009
min_samples_leaf : int, float, optional (default=1)
995
1010
The minimum number of samples required to be at a leaf node:
996
1011
@@ -999,6 +1014,9 @@ class RandomForestRegressor(ForestRegressor):
999
1014
`ceil(min_samples_leaf * n_samples)` are the minimum
1000
1015
number of samples for each node.
1001
1016
1017
+ .. versionchanged:: 0.18
1018
+ Added float values for percentages.
1019
+
1002
1020
min_weight_fraction_leaf : float, optional (default=0.)
1003
1021
The minimum weighted fraction of the input samples required to be at a
1004
1022
leaf node.
@@ -1156,6 +1174,9 @@ class ExtraTreesClassifier(ForestClassifier):
1156
1174
`ceil(min_samples_split * n_samples)` are the minimum
1157
1175
number of samples for each split.
1158
1176
1177
+ .. versionchanged:: 0.18
1178
+ Added float values for percentages.
1179
+
1159
1180
min_samples_leaf : int, float, optional (default=1)
1160
1181
The minimum number of samples required to be at a leaf node:
1161
1182
@@ -1164,6 +1185,9 @@ class ExtraTreesClassifier(ForestClassifier):
1164
1185
`ceil(min_samples_leaf * n_samples)` are the minimum
1165
1186
number of samples for each node.
1166
1187
1188
+ .. versionchanged:: 0.18
1189
+ Added float values for percentages.
1190
+
1167
1191
min_weight_fraction_leaf : float, optional (default=0.)
1168
1192
The minimum weighted fraction of the input samples required to be at a
1169
1193
leaf node.
@@ -1360,6 +1384,9 @@ class ExtraTreesRegressor(ForestRegressor):
1360
1384
`ceil(min_samples_split * n_samples)` are the minimum
1361
1385
number of samples for each split.
1362
1386
1387
+ .. versionchanged:: 0.18
1388
+ Added float values for percentages.
1389
+
1363
1390
min_samples_leaf : int, float, optional (default=1)
1364
1391
The minimum number of samples required to be at a leaf node:
1365
1392
@@ -1368,6 +1395,9 @@ class ExtraTreesRegressor(ForestRegressor):
1368
1395
`ceil(min_samples_leaf * n_samples)` are the minimum
1369
1396
number of samples for each node.
1370
1397
1398
+ .. versionchanged:: 0.18
1399
+ Added float values for percentages.
1400
+
1371
1401
min_weight_fraction_leaf : float, optional (default=0.)
1372
1402
The minimum weighted fraction of the input samples required to be at a
1373
1403
leaf node.
@@ -1511,6 +1541,9 @@ class RandomTreesEmbedding(BaseForest):
1511
1541
`ceil(min_samples_split * n_samples)` is the minimum
1512
1542
number of samples for each split.
1513
1543
1544
+ .. versionchanged:: 0.18
1545
+ Added float values for percentages.
1546
+
1514
1547
min_samples_leaf : int, float, optional (default=1)
1515
1548
The minimum number of samples required to be at a leaf node:
1516
1549
@@ -1519,6 +1552,9 @@ class RandomTreesEmbedding(BaseForest):
1519
1552
`ceil(min_samples_leaf * n_samples)` is the minimum
1520
1553
number of samples for each node.
1521
1554
1555
+ .. versionchanged:: 0.18
1556
+ Added float values for percentages.
1557
+
1522
1558
min_weight_fraction_leaf : float, optional (default=0.)
1523
1559
The minimum weighted fraction of the input samples required to be at a
1524
1560
leaf node.
0 commit comments