diff --git a/src/content/1.10/natural-transformations.tex b/src/content/1.10/natural-transformations.tex index ad39aea02..e520ca419 100644 --- a/src/content/1.10/natural-transformations.tex +++ b/src/content/1.10/natural-transformations.tex @@ -68,7 +68,7 @@ G f \Colon G a \to G b \end{gather*} The natural transformation $\alpha$ provides two additional morphisms -that complete the diagram in \emph{D}: +that complete the diagram in $\cat{D}$: \begin{gather*} \alpha_a \Colon F a \to G a \\ diff --git a/src/content/2.4/representable-functors.tex b/src/content/2.4/representable-functors.tex index 545585ff8..39458222e 100644 --- a/src/content/2.4/representable-functors.tex +++ b/src/content/2.4/representable-functors.tex @@ -299,7 +299,7 @@ \section{Challenges} \begin{enumerate} \tightlist \item - Show that the hom-functors map identity morphisms in \emph{C} to + Show that the hom-functors map identity morphisms in $\cat{C}$ to corresponding identity functions in $\Set$. \item Show that \code{Maybe} is not representable. diff --git a/src/content/3.1/its-all-about-morphisms.tex b/src/content/3.1/its-all-about-morphisms.tex index 1f49b26be..651a97766 100644 --- a/src/content/3.1/its-all-about-morphisms.tex +++ b/src/content/3.1/its-all-about-morphisms.tex @@ -98,7 +98,7 @@ \section{Natural Transformations} that the \emph{universal} cone, or the limit, is defined as a natural transformation between the (contravariant) hom-functor: \[F \Colon c \to \cat{C}(c, \Lim[D])\] -and the (also contravariant) functor that maps objects in \emph{C} to +and the (also contravariant) functor that maps objects in $\cat{C}$ to cones, which themselves are natural transformations: \[G \Colon c \to \cat{Nat}(\Delta_c, D)\] Here, $\Delta_c$ is the constant functor, and $D$ is the functor