|
| 1 | +#![allow(dead_code)] |
| 2 | + |
| 3 | +use crate::finite_field_generic::FiniteField; |
| 4 | +use std::ops::{Add, Div, Mul, Rem, Sub}; |
| 5 | + |
| 6 | +#[derive(Debug, Eq, PartialEq, Clone, Copy)] |
| 7 | +pub enum PointType<T: FiniteField> { |
| 8 | + Invalid, |
| 9 | + Infinity, |
| 10 | + Point(Coordinates<T>), |
| 11 | +} |
| 12 | + |
| 13 | +// An elliptic curve defined by the equation y**2 = x**3 + Ax + B |
| 14 | +#[derive(Debug, Eq, PartialEq)] |
| 15 | +pub struct ECurve<T: FiniteField> { |
| 16 | + a: T, |
| 17 | + b: T, |
| 18 | +} |
| 19 | + |
| 20 | +// Coordinates of a point on the curve |
| 21 | +#[derive(Debug, Eq, PartialEq, Clone, Copy)] |
| 22 | +pub struct Coordinates<T: FiniteField> { |
| 23 | + pub x: T, |
| 24 | + pub y: T, |
| 25 | +} |
| 26 | + |
| 27 | +#[derive(Debug, Eq, PartialEq, Clone, Copy)] |
| 28 | +pub struct ECPoint<'a, T: FiniteField> { |
| 29 | + curve: &'a ECurve<T>, |
| 30 | + p: PointType<T>, |
| 31 | +} |
| 32 | + |
| 33 | +impl<'a, T: FiniteField> ECurve<T> { |
| 34 | + pub const fn new(a: T, b: T) -> Self { |
| 35 | + Self { a, b } |
| 36 | + } |
| 37 | + |
| 38 | + pub fn point_at(&'a self, x: T, y: T) -> ECPoint<'a, T> { |
| 39 | + match self.contains(x, y) { |
| 40 | + false => ECPoint::<'a, T> { |
| 41 | + curve: self, |
| 42 | + p: PointType::Invalid, |
| 43 | + }, |
| 44 | + true => ECPoint::<'a, T> { |
| 45 | + curve: self, |
| 46 | + p: PointType::Point(Coordinates { x, y }), |
| 47 | + }, |
| 48 | + } |
| 49 | + } |
| 50 | + |
| 51 | + pub fn infinity(&'a self) -> ECPoint<'a, T> { |
| 52 | + ECPoint::<'a, T> { |
| 53 | + curve: self, |
| 54 | + p: PointType::Infinity, |
| 55 | + } |
| 56 | + } |
| 57 | + |
| 58 | + pub fn contains(&self, x: T, y: T) -> bool { |
| 59 | + y * y == x * x * x + self.a * x + self.b |
| 60 | + } |
| 61 | +} |
| 62 | + |
| 63 | +impl<T: FiniteField> Add for ECPoint<'_, T> { |
| 64 | + type Output = Self; |
| 65 | + |
| 66 | + fn add(self, rhs: Self) -> Self { |
| 67 | + // Points must be from the same curve |
| 68 | + assert!( |
| 69 | + self.curve == rhs.curve, |
| 70 | + "Cannot add points from different curves" |
| 71 | + ); |
| 72 | + |
| 73 | + let (p, rhs) = match (self.p, rhs.p) { |
| 74 | + // Infinity is the additive identity |
| 75 | + (PointType::Infinity, _) => return rhs, |
| 76 | + (_, PointType::Infinity) => return self, |
| 77 | + |
| 78 | + // Invalid + anything = Invalid |
| 79 | + (PointType::Invalid, _) | (_, PointType::Invalid) => { |
| 80 | + return ECPoint { |
| 81 | + curve: self.curve, |
| 82 | + p: PointType::Invalid, |
| 83 | + } |
| 84 | + } |
| 85 | + (PointType::Point(p1), PointType::Point(p2)) => (p1, p2), |
| 86 | + }; |
| 87 | + |
| 88 | + // 2. Points are additive inverses. The two points have the same x coord but different y. |
| 89 | + if p.x == rhs.x && p.y != rhs.y { |
| 90 | + return ECPoint { |
| 91 | + curve: self.curve, |
| 92 | + p: PointType::Infinity, |
| 93 | + }; |
| 94 | + } |
| 95 | + |
| 96 | + // 3. Either the points are the same point (P1 = P2) or are different (P1 != P2) |
| 97 | + // The only difference between the two cases is how we calculate the slope. For P1 == P2, |
| 98 | + // the line is tangent to the curve. For P1 != P2 the line intersects the curve at both |
| 99 | + // points. Furthermore, when P1 == P2 and P1.y == 0 the tangent line is vertical and the |
| 100 | + // resulting point lies at infinity. |
| 101 | + let s = match p == rhs { |
| 102 | + // 3.1. Points are the same point. |
| 103 | + true => { |
| 104 | + // Special case: If the y coord is 0, the tangent line is vertical since the elliptic |
| 105 | + // curve is symmetrical wrt. the x axis. This results on a point on the infinity. |
| 106 | + if p.y == T::from_i32(0).unwrap() { |
| 107 | + return ECPoint { |
| 108 | + curve: self.curve, |
| 109 | + p: PointType::Infinity, |
| 110 | + }; |
| 111 | + } |
| 112 | + let three = T::from_i32(3).unwrap(); |
| 113 | + let two = T::from_i32(2).unwrap(); |
| 114 | + (three * p.x * p.x + self.curve.a) / (two * p.y) |
| 115 | + } |
| 116 | + false => (rhs.y - p.y) / (rhs.x - p.x), |
| 117 | + }; |
| 118 | + |
| 119 | + let x = s * s - p.x - rhs.x; |
| 120 | + let y = s * (p.x - x) - p.y; |
| 121 | + |
| 122 | + ECPoint { |
| 123 | + curve: self.curve, |
| 124 | + p: PointType::Point(Coordinates { x, y }), |
| 125 | + } |
| 126 | + } |
| 127 | +} |
| 128 | + |
| 129 | +#[cfg(test)] |
| 130 | +mod tests { |
| 131 | + use super::*; |
| 132 | + |
| 133 | + mod i32_field { |
| 134 | + use super::*; |
| 135 | + #[test] |
| 136 | + fn test_contains() { |
| 137 | + let curve = ECurve::new(5_i32, 7_i32); |
| 138 | + let contained = curve.contains(-1, 1); |
| 139 | + let not_contained = curve.contains(-1, -2); |
| 140 | + |
| 141 | + assert!(contained); |
| 142 | + assert!(!not_contained); |
| 143 | + } |
| 144 | + |
| 145 | + #[test] |
| 146 | + fn test_point_at() { |
| 147 | + let curve = ECurve::new(5_i32, 7_i32); |
| 148 | + let exists = curve.point_at(-1, 1); |
| 149 | + let not_exists = curve.point_at(-1, -2); |
| 150 | + |
| 151 | + assert_eq!(exists.p, PointType::Point(Coordinates { x: -1, y: 1 })); |
| 152 | + assert_eq!(not_exists.p, PointType::Invalid); |
| 153 | + } |
| 154 | + |
| 155 | + #[test] |
| 156 | + fn test_add_infinity() { |
| 157 | + let curve = ECurve::new(5_i32, 7_i32); |
| 158 | + let a = curve.point_at(-1, 1); |
| 159 | + let ifty = curve.infinity(); |
| 160 | + |
| 161 | + assert_eq!(a + ifty, a); |
| 162 | + assert_eq!(ifty + a, a); |
| 163 | + } |
| 164 | + |
| 165 | + #[test] |
| 166 | + fn test_add_inverse() { |
| 167 | + let curve = ECurve::new(5_i32, 7_i32); |
| 168 | + let a = curve.point_at(-1, 1); |
| 169 | + let b = curve.point_at(-1, -1); |
| 170 | + |
| 171 | + assert_eq!(a + b, curve.infinity()); |
| 172 | + assert_eq!(b + a, curve.infinity()); |
| 173 | + } |
| 174 | + |
| 175 | + #[test] |
| 176 | + fn test_add_same() { |
| 177 | + let curve = ECurve::new(5_i32, 7_i32); |
| 178 | + let a = curve.point_at(-1, -1); |
| 179 | + let res = curve.point_at(18, 77); |
| 180 | + assert_eq!(res, a + a); |
| 181 | + |
| 182 | + let a = curve.point_at(-1, 1); |
| 183 | + let res = curve.point_at(18, -77); |
| 184 | + assert_eq!(res, a + a); |
| 185 | + } |
| 186 | + |
| 187 | + #[test] |
| 188 | + fn test_add_same_at_y0() { |
| 189 | + let curve = ECurve::new(1_i32, 10_i32); |
| 190 | + let p = curve.point_at(-2, 0); |
| 191 | + assert_eq!(curve.infinity(), p + p); |
| 192 | + } |
| 193 | + |
| 194 | + #[test] |
| 195 | + fn test_add() { |
| 196 | + let curve = ECurve::new(5_i32, 7_i32); |
| 197 | + let a = curve.point_at(-1, -1); |
| 198 | + let b = curve.point_at(2, 5); |
| 199 | + let res = curve.point_at(3, -7); |
| 200 | + assert_eq!(res, a + b); |
| 201 | + assert_eq!(res, b + a); |
| 202 | + } |
| 203 | + } |
| 204 | + |
| 205 | + mod prime_field { |
| 206 | + use super::*; |
| 207 | + use crate::finite_field_generic::FieldElement; |
| 208 | + type FE = FieldElement<i32>; |
| 209 | + |
| 210 | + #[test] |
| 211 | + fn test_contains() { |
| 212 | + let a = FE::new(0, 103).unwrap(); |
| 213 | + let b = FE::new(7, 103).unwrap(); |
| 214 | + let curve = ECurve::new(a, b); |
| 215 | + |
| 216 | + let x = FE::new(17, 103).unwrap(); |
| 217 | + let y = FE::new(64, 103).unwrap(); |
| 218 | + let contained = curve.contains(x, y); |
| 219 | + |
| 220 | + let x = FE::new(0, 103).unwrap(); |
| 221 | + let y = FE::new(1, 103).unwrap(); |
| 222 | + let not_contained = curve.contains(x, y); |
| 223 | + |
| 224 | + assert!(contained); |
| 225 | + assert!(!not_contained); |
| 226 | + |
| 227 | + // The same point (17,64) should not be contained in the curve over the field of the |
| 228 | + // integers |
| 229 | + let curve = ECurve::new(0, 7); |
| 230 | + let not_contained = curve.contains(17, 64); |
| 231 | + assert!(!not_contained); |
| 232 | + } |
| 233 | + |
| 234 | + // #[test] |
| 235 | + // fn test_point_at() { |
| 236 | + // let curve = ECurve::new(5_i32, 7_i32); |
| 237 | + // let exists = curve.point_at(-1, 1); |
| 238 | + // let not_exists = curve.point_at(-1, -2); |
| 239 | + // |
| 240 | + // assert_eq!(exists.p, PointType::Point(Coordinates { x: -1, y: 1 })); |
| 241 | + // assert_eq!(not_exists.p, PointType::Invalid); |
| 242 | + // } |
| 243 | + // |
| 244 | + // #[test] |
| 245 | + // fn test_add_infinity() { |
| 246 | + // let curve = ECurve::new(5_i32, 7_i32); |
| 247 | + // let a = curve.point_at(-1, 1); |
| 248 | + // let ifty = curve.infinity(); |
| 249 | + // |
| 250 | + // assert_eq!(a + ifty, a); |
| 251 | + // assert_eq!(ifty + a, a); |
| 252 | + // } |
| 253 | + // |
| 254 | + // #[test] |
| 255 | + // fn test_add_inverse() { |
| 256 | + // let curve = ECurve::new(5_i32, 7_i32); |
| 257 | + // let a = curve.point_at(-1, 1); |
| 258 | + // let b = curve.point_at(-1, -1); |
| 259 | + // |
| 260 | + // assert_eq!(a + b, curve.infinity()); |
| 261 | + // assert_eq!(b + a, curve.infinity()); |
| 262 | + // } |
| 263 | + // |
| 264 | + // #[test] |
| 265 | + // fn test_add_same() { |
| 266 | + // let curve = ECurve::new(5_i32, 7_i32); |
| 267 | + // let a = curve.point_at(-1, -1); |
| 268 | + // let res = curve.point_at(18, 77); |
| 269 | + // assert_eq!(res, a + a); |
| 270 | + // |
| 271 | + // let a = curve.point_at(-1, 1); |
| 272 | + // let res = curve.point_at(18, -77); |
| 273 | + // assert_eq!(res, a + a); |
| 274 | + // } |
| 275 | + // |
| 276 | + // #[test] |
| 277 | + // fn test_add_same_at_y0() { |
| 278 | + // let curve = ECurve::new(1_i32, 10_i32); |
| 279 | + // let p = curve.point_at(-2, 0); |
| 280 | + // assert_eq!(curve.infinity(), p + p); |
| 281 | + // } |
| 282 | + // |
| 283 | + // #[test] |
| 284 | + // fn test_add() { |
| 285 | + // let curve = ECurve::new(5_i32, 7_i32); |
| 286 | + // let a = curve.point_at(-1, -1); |
| 287 | + // let b = curve.point_at(2, 5); |
| 288 | + // let res = curve.point_at(3, -7); |
| 289 | + // assert_eq!(res, a + b); |
| 290 | + // assert_eq!(res, b + a); |
| 291 | + // } |
| 292 | + } |
| 293 | +} |
0 commit comments