-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
62 lines (50 loc) · 1.96 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from flask import Flask, request, jsonify, render_template
import pickle # or joblib for loading your trained model
import os
from flask_cors import CORS # Import CORS
app = Flask(__name__)
CORS(app)
@app.route('/')
def index():
return render_template('index.html')
# Load your trained model (ensure it's saved and accessible)
model = pickle.load(open("dataset/capstone_ai_2.pkl", "rb"))
@app.route('/predict', methods=['POST'])
def predict():
data = request.json # Parse incoming JSON data
# Ensure the keys match your model's expected input
input_features = [
data['Age'], data['Gender'],
data['ParentalEducation'], data['StudyTimeWeeklyCategory'],
data['Absences'], data['Tutoring'],
data['ParentalSupport'], data['ExtracurricularCategory'], data['Year Level'], data['Subject'], data['Previous Grades']
]
prediction = model.predict([input_features]) # Predict using your model
grade_classes = {
0: 'A (GPA >= 3.0)',
1: 'B (2.2 <= GPA < 3.0)',
2: 'C (1.4 <= GPA < 2.2)',
3: 'D (0.8 <= GPA < 1.4)',
4: 'F (GPA < 0.8)'
}
print("Pred:", prediction)
predicted_grade = grade_classes[prediction[0]]
return jsonify({"Predicted Grade": predicted_grade})
UPLOAD_FOLDER = 'uploads'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
@app.route('/upload_plot', methods=['POST'])
def upload_plot():
if 'file' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
# Save the file
file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
file.save(file_path)
return jsonify({'message': 'File uploaded successfully', 'file_path': file_path}), 200
# if __name__ == '__main__':
# app.run(debug=True)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)