We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Thank You for Your Prompt Reply! Let me first address the issue with the code snippet provided: eval_dict = [ {"pred": "$0.0833333333333333$", "gt": "$\\frac{1}{12}$"}, {"pred": "$1,4.5$", "gt": "$1,\\frac{9}{2}$"}, {"pred": "$\\frac{x}{7}+\\frac{2}{7}$", "gt": "$\\frac{x+2}{7}$", "timeout": True}, {"pred": "$\\sec^2(y)$", "gt": "$\\tan^2(y)+1$", "timeout": True}, {"pred": "$\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\end{pmatrix}$", "gt": "$(\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\\\\\end{pmatrix})$", "timeout": True}, {"pred": '$\\begin{pmatrix}\\frac{1}{3x^{2/3}}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\end{pmatrix}$', "gt": '$(\\begin{pmatrix}\\frac{1}{3\\sqrt[3]{x}^2}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\\\\\end{pmatrix})$', "timeout": True}, {"pred": '$-\\frac{8x^2}{9(x^2-2)^{5/3}}+\\frac{2}{3(x^2-2)^{2/3}}$', "gt": '$-\\frac{2(x^2+6)}{9(x^2-2)\\sqrt[3]{x^2-2}^2}$', "timeout": True}, {"pred": '$-34x-45y+20z-100=0$', "gt": '$34x+45y-20z+100=0$'}, {"pred": '$\\frac{100}{3}$', "gt": '$33.3$'}, {"pred": '$\\begin{pmatrix}0.290243531202435\\\\0.196008371385084\\\\-0.186381278538813\\end{pmatrix}$', "gt": '$(\\begin{pmatrix}0.29\\\\0.196\\\\-0.186\\\\\\end{pmatrix})$', "timeout": True}, {"pred": '$\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{2\\sqrt{33}+15}$', "gt": '$\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{15+2\\sqrt{33}}$', "timeout": True}, {"pred": '$(+5)(b+2)$', "gt": '$(a+5)(b+2)$', "timeout": True}, {"pred": '$\\frac{1+\\sqrt{5}}{2}$', "gt": '$2$', "timeout": True}, {"pred": '$\\frac{34}{16}+\\frac{\\sqrt{1358}}{16}$', "gt": '$4$', "timeout": True}, {"pred": '$1$', "gt": '$1\\\\sqrt{19}$', "timeout": True}, {"pred": '$(0.6,2.6667]$', "gt": "$(\\frac{3}{5},\\frac{8}{3}]$", "timeout": True}, {"pred": '$x+2n+1$', "gt": '$x+1$', "timeout": True}, {"pred": "$1$", "gt": "$2\\frac{1}{2}$"} ] And the output is: [0] pred: $0.0833333333333333$, ground truth: $\frac{1}{12}$, result: True [1] pred: $1,4.5$, ground truth: $1,\frac{9}{2}$, result: True [2] pred: $\frac{x}{7}+\frac{2}{7}$, ground truth: $\frac{x+2}{7}$, result: True [3] pred: $\sec^2(y)$, ground truth: $\tan^2(y)+1$, result: True [4] pred: $\begin{pmatrix}-\frac{7}{4}&-2\4&\frac{1}{4}\end{pmatrix}$, ground truth: $(\begin{pmatrix}-\frac{7}{4}&-2\4&\frac{1}{4}\\end{pmatrix})$, result: True [5] pred: $\begin{pmatrix}\frac{1}{3x^{2/3}}&0&0\0&1&0\-\sin(x)&0&0\end{pmatrix}$, ground truth: $(\begin{pmatrix}\frac{1}{3\sqrt[3]{x}^2}&0&0\0&1&0\-\sin(x)&0&0\\end{pmatrix})$, result: True [6] pred: $-\frac{8x^2}{9(x^2-2)^{5/3}}+\frac{2}{3(x^2-2)^{2/3}}$, ground truth: $-\frac{2(x^2+6)}{9(x^2-2)\sqrt[3]{x^2-2}^2}$, result: True [7] pred: $-34x-45y+20z-100=0$, ground truth: $34x+45y-20z+100=0$, result: True [8] pred: $\frac{100}{3}$, ground truth: $33.3$, result: False [9] pred: $\begin{pmatrix}0.290243531202435\0.196008371385084\-0.186381278538813\end{pmatrix}$, ground truth: $(\begin{pmatrix}0.29\0.196\-0.186\\end{pmatrix})$, result: False [10] pred: $\frac{\sqrt{\sqrt{11}+\sqrt{194}}}{2\sqrt{33}+15}$, ground truth: $\frac{\sqrt{\sqrt{11}+\sqrt{194}}}{15+2\sqrt{33}}$, result: True [11] pred: $(+5)(b+2)$, ground truth: $(a+5)(b+2)$, result: False [12] pred: $\frac{1+\sqrt{5}}{2}$, ground truth: $2$, result: False [13] pred: $\frac{34}{16}+\frac{\sqrt{1358}}{16}$, ground truth: $4$, result: False [14] pred: $1$, ground truth: $1\sqrt{19}$, result: False [15] pred: $(0.6,2.6667]$, ground truth: $(\frac{3}{5},\frac{8}{3}]$, result: False [16] pred: $x+2n+1$, ground truth: $x+1$, result: False [17] pred: $1$, ground truth: $2\frac{1}{2}$, result: True Cases 8, 9, 15: I think they should be considered correct? As the differences are within numerical precision limits. Case 17: The result is incorrect because $2\frac{1}{2}$ corresponds to a value of 2.5, which does not match $1$.
Thank You for Your Prompt Reply!
Let me first address the issue with the code snippet provided:
eval_dict = [ {"pred": "$0.0833333333333333$", "gt": "$\\frac{1}{12}$"}, {"pred": "$1,4.5$", "gt": "$1,\\frac{9}{2}$"}, {"pred": "$\\frac{x}{7}+\\frac{2}{7}$", "gt": "$\\frac{x+2}{7}$", "timeout": True}, {"pred": "$\\sec^2(y)$", "gt": "$\\tan^2(y)+1$", "timeout": True}, {"pred": "$\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\end{pmatrix}$", "gt": "$(\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\\\\\end{pmatrix})$", "timeout": True}, {"pred": '$\\begin{pmatrix}\\frac{1}{3x^{2/3}}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\end{pmatrix}$', "gt": '$(\\begin{pmatrix}\\frac{1}{3\\sqrt[3]{x}^2}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\\\\\end{pmatrix})$', "timeout": True}, {"pred": '$-\\frac{8x^2}{9(x^2-2)^{5/3}}+\\frac{2}{3(x^2-2)^{2/3}}$', "gt": '$-\\frac{2(x^2+6)}{9(x^2-2)\\sqrt[3]{x^2-2}^2}$', "timeout": True}, {"pred": '$-34x-45y+20z-100=0$', "gt": '$34x+45y-20z+100=0$'}, {"pred": '$\\frac{100}{3}$', "gt": '$33.3$'}, {"pred": '$\\begin{pmatrix}0.290243531202435\\\\0.196008371385084\\\\-0.186381278538813\\end{pmatrix}$', "gt": '$(\\begin{pmatrix}0.29\\\\0.196\\\\-0.186\\\\\\end{pmatrix})$', "timeout": True}, {"pred": '$\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{2\\sqrt{33}+15}$', "gt": '$\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{15+2\\sqrt{33}}$', "timeout": True}, {"pred": '$(+5)(b+2)$', "gt": '$(a+5)(b+2)$', "timeout": True}, {"pred": '$\\frac{1+\\sqrt{5}}{2}$', "gt": '$2$', "timeout": True}, {"pred": '$\\frac{34}{16}+\\frac{\\sqrt{1358}}{16}$', "gt": '$4$', "timeout": True}, {"pred": '$1$', "gt": '$1\\\\sqrt{19}$', "timeout": True}, {"pred": '$(0.6,2.6667]$', "gt": "$(\\frac{3}{5},\\frac{8}{3}]$", "timeout": True}, {"pred": '$x+2n+1$', "gt": '$x+1$', "timeout": True}, {"pred": "$1$", "gt": "$2\\frac{1}{2}$"} ]
And the output is: [0] pred: $0.0833333333333333$, ground truth: $\frac{1}{12}$, result: True [1] pred: $1,4.5$, ground truth: $1,\frac{9}{2}$, result: True [2] pred: $\frac{x}{7}+\frac{2}{7}$, ground truth: $\frac{x+2}{7}$, result: True [3] pred: $\sec^2(y)$, ground truth: $\tan^2(y)+1$, result: True [4] pred: $\begin{pmatrix}-\frac{7}{4}&-2\4&\frac{1}{4}\end{pmatrix}$, ground truth: $(\begin{pmatrix}-\frac{7}{4}&-2\4&\frac{1}{4}\\end{pmatrix})$, result: True [5] pred: $\begin{pmatrix}\frac{1}{3x^{2/3}}&0&0\0&1&0\-\sin(x)&0&0\end{pmatrix}$, ground truth: $(\begin{pmatrix}\frac{1}{3\sqrt[3]{x}^2}&0&0\0&1&0\-\sin(x)&0&0\\end{pmatrix})$, result: True [6] pred: $-\frac{8x^2}{9(x^2-2)^{5/3}}+\frac{2}{3(x^2-2)^{2/3}}$, ground truth: $-\frac{2(x^2+6)}{9(x^2-2)\sqrt[3]{x^2-2}^2}$, result: True [7] pred: $-34x-45y+20z-100=0$, ground truth: $34x+45y-20z+100=0$, result: True [8] pred: $\frac{100}{3}$, ground truth: $33.3$, result: False [9] pred: $\begin{pmatrix}0.290243531202435\0.196008371385084\-0.186381278538813\end{pmatrix}$, ground truth: $(\begin{pmatrix}0.29\0.196\-0.186\\end{pmatrix})$, result: False [10] pred: $\frac{\sqrt{\sqrt{11}+\sqrt{194}}}{2\sqrt{33}+15}$, ground truth: $\frac{\sqrt{\sqrt{11}+\sqrt{194}}}{15+2\sqrt{33}}$, result: True [11] pred: $(+5)(b+2)$, ground truth: $(a+5)(b+2)$, result: False [12] pred: $\frac{1+\sqrt{5}}{2}$, ground truth: $2$, result: False [13] pred: $\frac{34}{16}+\frac{\sqrt{1358}}{16}$, ground truth: $4$, result: False [14] pred: $1$, ground truth: $1\sqrt{19}$, result: False [15] pred: $(0.6,2.6667]$, ground truth: $(\frac{3}{5},\frac{8}{3}]$, result: False [16] pred: $x+2n+1$, ground truth: $x+1$, result: False [17] pred: $1$, ground truth: $2\frac{1}{2}$, result: True
Originally posted by @xiaobanni in #2
Mixed fractions are not parsed correctly instead are parsed as simple multiplication. Test case $2\frac{1}{2}$ == 2.5
$2\frac{1}{2}$ == 2.5
The text was updated successfully, but these errors were encountered:
Fixed with the newest version
Sorry, something went wrong.
No branches or pull requests
Originally posted by @xiaobanni in #2
Mixed fractions are not parsed correctly instead are parsed as simple multiplication.
Test case
$2\frac{1}{2}$ == 2.5
The text was updated successfully, but these errors were encountered: